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1 Introduction

Securing today’s computer system is an urgent and difficult problem. Recent trends

show that today’s computer system attackers have economic incentives, making attacks

likely to continue. For example, attackers are selling computing assets on large networks

of compromised machines, called botnets. Spammers and organized crime syndicates

use botnets for activities such as on-line extortion, delivering unsolicited email and

advertisements, and identity theft through fraudulent web sites. As attackers can make

money by compromising vulnerable hosts and renting them out, skilled attackers will

continue to find new and ingenious methods to break into computer systems. According

to the annual CSI/FBI computer crime and security survey of U.S. businesses, computer

security compromises continue despite the best efforts of current practices of security [32].

For instance, in the year 2006, although most companies used and promptly updated

computer security products, more than 72% of the companies surveyed experienced at

least one computer security incident. For example, 98% of the companies used firewalls,

97% used Anti-virus software, and 78% used Anti-spyware software. This survey clearly

shows that the current state-of-the-art computer security products could not prevent all

computer security incidents.

Among various types of computer security intrusions, executing malware (MALicious

softWARE) or malicious code on a victim system is the most favorable and widely spread

attack method used by attackers [32]. The unauthorized code execution is the most crit-

ical attack; attackers can achieve arbitrary goals with arbitrary code executions. There

are largely two ways for attackers to execute malware on a victim system [66]: computer

viruses and Internet worms. One way to execute malicious code is through Internet

worms which exploit vulnerabilities of programs to execute malware and propagate by
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themselves. By exploiting program bugs, attackers can alter the execution or control

flow of program so that malicious code or program is executed instead of the original

code. The other way of executing malicious code is through viruses or Trojan horses.

Attackers may deceive users into downloading and executing malware such as virus and

Trojan horse by injecting malicious code on the Internet web site or attaching malware

in e-mails. In such a way, malware can be executed with or without the users’ consent.

In order to secure computing system from malware execution, there are a number

of different types of security products commercially available. Largely, they can be

categorized into two types of defense mechanisms on the host side: misuse-based and

model-based [66]. Each of them uses different system information to mitigate computer

security attacks. The most popular misuse-based security product is anti-virus software,

which generates signatures from the manual analysis of malware. The binary of malware

is scanned structurally and reverse engineered to find an invariant to be used as a

signature. Malwares are detected by matching existing signatures with the accessed

binary stream. Although the method has been used effectively on production systems,

it only prevents known malwares and has difficulty detecting newly created malware,

including polymorphic malware such as encrypted code and run-time packed malware.

In general, the execution of malware through the social engineering can be prevented

by the combination of the anti-virus software and the user’s cautions. However, recent

malwares use evading techniques to bypass the anti-virus software as well as users’

cautions.

Model-based systems operate by comparing the observed behavior of an application

to models of normal behavior, which may be derived automatically via static analysis

or learned by analyzing the run-time behavior of programs. Attacks are detected when

the dynamic behavior of the monitored program deviates from the normal behavior cap-

tured by the model. In contrast to the misuse-based approaches, model-based schemes

have the advantage of being able to detect ingenious attacks. Most model-based intru-

sion detection systems monitor the sequence of system calls issued by an application,

mostly taking into account some execution state which may include a current program
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counter(PC). However, it may be still vulnerable to ingenious attacks that craft the

program run-time states, since the states information is obtained from the memory sub-

system. Additionally, it may still be vulnerable to mimicry attacks due to its limited

precision; some of the model-based systems construct a state for the system calls or

function calls.

1.1 Overview of Thesis Work

In order to secure computing systems from the execution of malware, This thesis

study both misuse- and model-based systems that utilize and validate fine-grain control

flow information at program run-time. Since the dynamic control flow information is a

good source for representing states of a running program, it can be used for detecting

anomalies in program behavior. Hence, for the model-based approach, we have built

prototype systems to validated the run-time control flow information with pre-defined

control flow information to detect anomalies in the systems. Also, control flow infor-

mation is an unique characteristic of a program that can be considered as DNA of the

program. It is hard, if not impossible, for two programs to exhibit the identical control

flow behavior. Therefore, for the misuse-based approach, we constructed malware sig-

nature from its control flow information and detected malware by matching the control

flow behavior of programs with that of malware at run-time.

1.1.1 Control Flow Validation against Control Flow Attacks (CFAs)

One of the most critical threats to buggy code is a control flow attack (CFA). CFAs

have been frequently exploited to make the first breach to computer system security.

Many service programs have unintended vulnerabilities in their dynamic execution en-

vironments, which are explored by attackers to redirect their control flow to a harmful

code. Once the adversary has successfully obtained the control flow of the victim sys-

tem, he or she may be able to perform various malicious actions such as stealing and/or

corrupting important data in the victim machine. Control flow attacks do not only cause

breaches to individual systems. More often, the adversary utilizes the victim as a zom-
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bie or a bot to launch large-scale attacks such as DDOS (distributed denial of service)

attacks. Unfortunately, vulnerabilities leading to CFAs are inherent and pervasive in

software as reported by the National Vulnerability Database (NVD).

There are two fundamental assumptions that make the current processor architecture

vulnerable for CFAs:(1) memory is trusted and (2) control flow tracking is blindfolded

without validity a check. Recent studies, XOM and AEGIS, try to encrypt all memory

bound data to enforce a secure running environment, but such an approach has been

shown to be ineffective for sophisticated CFAs. Blanket encryption of all data is not

able to protect control data corruption by legitimately encrypted control data set by

compromised normal data. Also generic protection mechanisms are proposed with hard-

ware modifications. Dynamic Information Flow Tracking [65] and Minos [25] modifies

hardware to efficiently track down spurious data to prohibit using this data as control

data. However, these solutions require major hardware modifications that may not be

adopted quickly in practice.

Control flow validation, another generic defense mechanism against CFAs, is an effec-

tive approach to prevent CFAs. In this approach, each control flow transfer is validated

at run-time with the intended control flow graph of the program. Rather than finding

a solution from a high level of application source code or even behavior specifications,

control flow validation focus on each individual instruction at run-time. In the current

processors, control flow transfer at the machine instruction level is blindfolded without

validity check. Processors blindly follow the program counter to fetch and execute in-

structions. We believe this a fundamental deficiency in the hardware that causes the

endless chase of software vulnerability, its exploitation, and its patch. Hence one of our

goals is to mitigate software bugs that leads to control flow interception from critical

security issue to simple software bugs by dynamically validating the control flow of an

application program to detect anomalies.

Program Shepherding [44] has been proposed to run vulnerable programs on a dy-

namic code optimization system, which is called DynamoRIO. The system monitors

every indirect branches to enforce security policies on program control transfers. How-
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ever, it incurs large performance overhead up to 7.5 times slowdown due to the inefficient

monitoring method. Abadi et al. [8]. proposed the IRM (inline reference monitoring)

defense mechanism that instruments the program binary code in a manner that validates

every indirect control transfer by inserting validation stubs before the control instruction

or replacing control instructions with security code. It requires a sophisticated binary

instrumentation tool to identify legitimate targets and insert the security code. The

binary instrumentation technique has been used in various academic area of study, but

changing the original code may not be a favorable approach to protect the system in

practice. The binary instrumentation may raise robustness and compatibility issues as

well as legal concerns in practice.

Therefore we propose efficient and non-invasive dynamic control flow validation sys-

tem implemented with existing hardware features in commercial micro-processors. In

contrast to the previous approaches, middleware and IRM, the proposed control flow

validation does not interpret the instruction stream nor modify the source image. By

leveraging the existing hardware features in commercial processors, the control flow

validation mechanism can be implemented transparently to the target application. Fur-

thermore, since the state of hardware facility is transparent to applications and cannot

be crafted by other entities in the computer system; the implementation provides strong

guarantees that a successful CFA is extremely difficult, if not impossible, under the

control flow validation system. We have built the prototype systems called, IBMON

(Indirect Branch MONitor), on three different micro-processors. The prototype systems

effectively detect various CFAs and exhibit the performance overhead which ranges from

0% to 33.5% an average of 8.3% for SPECINT2000 benchmarks. For other server bench-

marks, the performance degradation of IBMON is negligible.

1.1.2 IBF-Cache: Hardware supports for Control Flow Validation

Control Flow Validation is an effective approach to detecting and preventing CFAs.

Although IBMON is the most efficient control flow validation system among existing

control flow validation systems, it still incurs non-negligible performance overhead, up



www.manaraa.com

6

to 33.5% for one of the SPECINT2000 benchmarks. Therefore we also examine effec-

tive yet minimal hardware support which can provide seamless control flow validation

environment. IBF-Cache (Indirect Branch Filter Cache) is the cache design that effec-

tively reduces the frequency of control flow validations by exploring the temporal local-

ity of control flow transfers in programs. In various performance tests, based on both

trace-based and cycle accurate simulations, IBMON with IBF-Cache shows negligible

performance overhead on all SPECINT2000 benchmarks and other server benchmarks.

1.1.3 Control Flow Inspection for Detecting Polymorphic Malware

The conventional approach to detecting malwares is based on static scanning of

malware signatures in the computer system files and memory. It is effective for many

existing malwares, but it is very limited for malwares that disguise the malicious code

with run-time packing and encryption.

Recently, packed malwares, which use one of the obfuscation techniques, impose

a significant problem in malware analysis and detection. Such programs consist of a

decompression or decryption routine that extracts the transformed payload from the

memory and then executes it. Hence a malware detector has to scan malware after the

decryption or decompression has been done. Commercial anti-virus software has a lim-

ited capability to detect such malwares. If the decryption routine or unpacking routine

is known, it tries to decrypt or unpack the malware and scans the result. However, it

is impossible or hard to apply all known compression or encryption algorithms. Some

generic unpacking through emulation techniques can detect packed malwares. However

emulation places a time limit on the execution of packed program and is restricted by

the emulation environment. Hence some malware which uses significant amount of time

to unpack its payload, can bypass the emulation-based detection method.

Figure 1.1 shows the statistical distribution of packers used by malwares in the year

2006 according to Panda security [15]. The new generation of malwares are increasingly

using these run-time packers. According to a recent study [15], 78% of malwares used

run-time packing method. Currently, new run-time packers are created from existing
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Figure 1.1 Statistic of techniques that malware used in year 2006

ones at a rate of 10 to 15 per month. Hence it may not be effective to simply disallow

the execution of run-time packed program due to the lack of ability to identify run-

time packers. As a result, malware writers have a large selection of tools to pack their

malware. Consequently, an old malware may appear to be a new malware even though

the malware signature is known for traditional detection mechanism.

Unfortunately, according to [49], most of anti-virus software cannot deal with run-

time packers. There are three main issues: detection rates, false alarms and crashes/speed

problem. The detection rate varies from 10% to 80% for commercial anti-virus software.

Moreover, run-time packed malwares also increase scanning time of anti-virus software

by a factor of 1.5 and 10 times and raise false alarms or crash during scanning.

In order to detect polymorphic malware, a number of different generic unpackers are

proposed. Some of the generic unpackers use the emulation environment or single step

execution to identify the starting of the plain malware. However, these approaches have

a few drawbacks. The emulation or single step execution imposes high performance
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overhead to detect the execution of the plain malware so that it may be difficult to use

them in practice. Since the heuristic used for identifying the stating location of the plain

malware is specific to a subset of run-time packers, some of the them cannot analyze the

plain malware.

Another approach to detect polymorphic malware is to detect modified code execu-

tion. It enforces the program execution policy that raises alarms upon code execution

from a written page. Since polymorphic malware generates plain malware dynamically

and stores it into writable page, the plain malware execution violates the policy. The

mechanism can identify and mark suspicious memory pages that contains the plain mal-

ware. Later, when a dangerous system call is invoked, anti-virus scanner is activated

to scanning the marked memory pages. However, malwares can try to bypass the scan-

ning by using other code obfuscating techniques, such as hiding entry point of malware,

mixing code and data, and so on, in addition to run-time packing and encryption. For

those malwares, anti-virus software still has to perform advanced malware detection and

expensive operations such as disassembling or emulation to detect those malwares [67].

These operations will incur high performance penalty.

Therefore this thesis also explores a possible solution to effectively detect polymorphic

malware. Since control flow information can be considered a unique characteristic of a

program, utilizing control flow information has a potential benefit to existing misuse-

based defense mechanisms. Control flow inspection is an effective mechanism to detect

polymorphic malware that evades the static scanning of anti-virus software by hiding

its binary through polymorphic methods. Since such a malware reveals its original code

during run-time, the traditional system-call monitoring system with dynamic control

flow information is able to detect such a malware during run-time.

The fine-grain control flow validation system can also inspect and record the recent

control flow of a target application. The hardware debugging features can be extended

to be used for inspection of recent control flow transfers. Hence, this thesis also proposes

RCFI (Recent Control Flow Inspection) system that constructs malware signatures from

their control flow information and detect ingenious malwares at run-time by matching
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the control flow signature. RCFI system can detect polymorphic malware but shows

limitations on detecting metamorphic malware that changes instructions instead of ob-

fuscating image.

1.2 Thesis Structure

This thesis proposes to use existing hardware feature to implement efficient control

flow validation systems. The thesis demonstrates the generality and practicality of the

approach by implementing and testing prototype systems on various system platforms.

The thesis also propose a hardware support to provide seamless control flow validations.

It also discusses control flow inspection method to detect polymorphic malware.

Chapter 2 describes more details on CFAs and the detection mechanisms. First,

details of CFAs are examined and related works against CFAs are described. Chapter 3

presents prototype system, IBMON (Indirect Branch MONitor), and detailed analysis

on its effectiveness as well as performance impact. Chapter 4 describes a hardware

support, IBF-Cache, that provides seamless dynamic control flow validation. The the-

sis presents details of IBF-Cache design and implementation. It also demonstrates the

efficacy of the hardware support by presenting the result of both cycle accurate simu-

lation and trace-based simulation. Chapter 5 describes a run-time malware detection

system, RCFI (Recent Control Flow Validation), that uses control flow information to

detect polymorphic malware at run-time. It presents the recent malware trend and

other approaches to detect polymorphic malware. Chapter 5 also gives an insight into

RCFI system and offers detailed analysis of its effectiveness and performance. Lastly,

chapter 6 concludes the dissertation by emphasizing the efficiency and the effectiveness

of IBMON and the novelty of IBF-Cache as well as the benefit of the RCFI, which is

dynamic control flow inspection system.
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2 Background

In the classical view of computing system security, there are four kinds of threats

to the security of computing system in general: interruption, interception, modification,

and fabrication. In an interruption, an asset of the system becomes lost, unavailable,

or unusable. For example, attackers may destroy a hardware device, erase a program

or a data file. Attackers also may launch the Distributed Denail of Service (DDoS) to

interrupt the network services. An interception means that some unauthorized party

has gained access to an asset. Examples of these types of attacks are illicit copying of

program or data files and wiretapping to obtain data in network. In a modification,

attackers not only access but also tamper with an asset. For example, someone might

change the values in a database, or alter program so that it performs an additional

computation, or modify data being transmitted electronically. Finally, an unauthorized

party might fabricate counterfeit objects on a computing system. The intruder may

insert spurious transactions to a network communication system or add records to an

existing database.

There have been numerous countermeasures to remove each of these threats individ-

ually on the part of hosts. These include applying strict access control and encryption of

data or network transaction; using of intrusion detection system, intrusion analysis and

system monitoring tools. These countermeasures are effective on some types of security

attacks. However, recent trend of security attacks can neutralize all the countermeasures

by taking total control of a victim system. These attacks exploit software bugs or vulner-

ability to achieve their malicious goals. Software bugs or vulnerabilities cannot be only

simple glitches in computing systems but also critical security problems, surrendering

total control of a system. Therefore, in order to circumvent security countermeasures,
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the ultimate goal of most security attacks is to gain full control of the victim system by

taking control of vulnerable privileged programs.

2.1 Control Flow Attack and Computer System Security

One of the most critical computer security threats is an attempt of gaining unau-

thorized access to a computer system. It allows attackers to achieve malicious goals

including objectives from four classical threats. A process or a running instance of a

program is the sequential execution of machine instructions. The process is made up of

multiple basic blocks that have one entry point and only one exit point. The dynamic

sequence of these blocks is arranged by control instruction such as branch instruction,

which is located at the end of the basic block. The transition between basic blocks or

reentering the same block is called control flow. Control flow attack changes intended

control flow and redirect it to malicious code or existing code in memory to execute

arbitrary code to achieve the attackers’ malicious goal. Control flow attack or execution

flow hijacking is widely used and a powerful method for gaining unauthorized access to

a computer system.

2.1.1 Control Data

There are several different types of control data in a process. In order to hijack

the control flow of a process, attackers change the control data in the process’ writable

address space. In this section, we examine control data that can be overwritten by

attackers to achieve CFA.

2.1.1.1 Return Address in Run-time Stack

Run-time stack is a stack data structure that stores information about the active

procedure or the function of a program. It contains procedure linking information such as

return address and previous stack base frame information. Also, it contains parameters

for the called function and local variables. Return address is one of the control data
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in a process. When a function is called, prior to executing the first instruction of the

called function, a processor pushes the return address, which is the address of the next

instruction of the function call in the caller, into the run-time stack. When the called

function returns, a processor pops the top of the run-time stack to transfer back the

control to the caller. Although a processor tracks all the call-return sequences with its

branch predictor, called a return address stack, or a return address buffer, the processor

relies on the information in the run-time stack due to precision of the branch predictor.

Since the run-time stack is writable memory area of a process, control data in run-time

stack is often the victim of CFA. The classical stack smashing buffer overflow attack is a

well-known CFA that alters the return address to redirect the control flow of the victim

process to a malicious code.

Figure 2.1(b) shows the memory layout of the run-time stack. Traditionally, run-

time stack grows downward in the process memory for the virtual memory management

purpose. In other words, when data is pushed into the stack, the address of the top of

stack is reduced by the size of the data. On the other hand, when data is popped from

the stack, the address of the top of stack is increased by the size of the data. However

the buffer or array in the stack grows from lower address to higher address. Therefore,

overflowing the buffer in the run-time stack may result in overwriting the return address.

Figure 2.1 uses an example to demonstrate the mechanism of a typical buffer overflow

attack. In the program shown in Figure 2.1(a), function the process input accepts a

request from an Internet connection and calls the parse input to interpret the request.

In a typical system, the run-time stack stores the local variables and return address

for functions, as shown in Figure 2.1(b). This program runs correctly for a normal

request whose request type is less than 32 bytes plus one null character. An over-length

type in a benevolent request usually crashes the program but does not cause a security

breach. However, an adversary can construct a request such that the buffer is filled with

malicious code and the return address is overwritten with a pointer to the malicious

code. At the function return point, the changed return address is fetched and used

to direct the control flow. The control flow executes the malicious code on the victim
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void process_input(FILE* socket) {
char buf[4096];
fgets(buf, 4096, socket);
parse_input(buf);
...

}
void parse_input(char *buf) {

char req_type[33];
sscanf(buffer, "%s", req_type);
...

}

(a) A program that contains buffer overflow vul-
nerability.

return address

old FP

buf

return address

old FP

req_type

stack 
grows

overflow
direction

(b) Part of the run-time stack frame of the pro-
gram.

Figure 2.1 Typical Buffer Overflow Error.

system Then, the attack code can carry out any of the threats desired by the adversary

with the privilege of the victim program.

2.1.1.2 Frame Pointer in Run-time Stack

Stack smashing attacks directly modify the control data, return address in run-time

stack. Frame pointer overwriting attacks are another type of control flow attack that

occurs in the run-time stack. In this section, the stack frame in the x86 architecture is

examined to describe frame pointer overwriting attacks.

The stack is typically divided into frames. Each stack frame can contain local vari-

ables, parameters to be passed to another procedure, and procedure linking information.

The stack frame base pointer, EBP register, identifies a fixed reference point within the

stack frame for the called procedure. To use the stack frame base pointer, the called

procedure stores the previous EBP on the stack. The stack frame base pointer then

permits easy access to data structures passed on the stack, to the return address, and

to local variables added to the stack by the called procedure.

Prior to branching to the first instruction of the called procedure, the CALL instruc-

tion pushes the address in the EIP register into the current stack. Upon returning from a

called procedure, the RET instruction moves the return address from the stack back into
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pushl %ebp movl %ebp, %esp

movl %esp, %ebp popl %ebp

subl $n, %esp ret

(a) (b)

Figure 2.2 (a) function prologue (b) function epilogue

the EIP register. The execution of the calling procedure then resumes. The processor

does not keep track of the location of the return address. It is up to the programmer

to insure that the stack pointer is pointing to the return address on the stack before

issuing a RET instruction. Therefore the stack frame base pointer is used to help keep

track of the previous stack frame.

The segment of the code in figure 2.2 shows the function prologue and epilogue.

The function prologue is the first code segment after CALL instruction is executed.

The function epilogue is the code segment executed right before the execution of RET

instruction. The first instruction in the function prologue pushes the old frame pointer

into the top of the run-time stack to store the previous stack frame base pointer. After

that, current top of the stack is stored into EBP register to track current stack frame. $n

is the size of the current stack frame which includes the size of the local variables. ESP

is adjusted by subtracting the size of stack from current ESP value. During the function

epilogue, the stack pointer, ESP, is restored by moving current stack base frame pointer,

EBP, to the ESP. After that previous base frame pointer value is restored by popping

the top of the stack. Consequently ESP points return address before the execution of

RET instruction.

Since the processor does not require that the return address to return back to the

calling procedure, prior to executing the RET instruction, the return address can be

manipulated in the software to point to any address in the current procedure. By

altering stack frame base pointers in the run-time stack, attacker can manipulate the

location of the return address. Consequently, attacker can change the return address

of the calling procedure without directly modifying the return address in the run-time
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1. void fun1(const char *str){...}

2. void main(int argc, char **argv){

3. static char buff[128];

4. static void (*fptr)(const char *str);

5. fptr = &fun1;

6. strncpy(buff, argv[1], strlen(argv[1]));

7. (void)(*fptr)(argv[2]);

...

}

Figure 2.3 Example of Function Pointer

stack.

2.1.1.3 Function Pointer and longjmp() Buffer in Heap/Data section

Function pointers are used to implement the late-binding of functions or implement

callbacks. Figure 2.3 shows an example of the function pointer. The static character

array, buff, and the function pointer, fptr, are both uninitialized and stored in the BSS

segment. The fun1 is called via the function pointer fptr. Note that the function pointer

and character buffer also can be stored in the heap area by allocating it dynamically via

malloc().

Function pointer overwriting modifies a function pointer to point to the malicious

code supplied by attackers. For instance, in the line number 6, prior to calling the fun1

via the function pointer fptr, the function pointer can be overwritten with the string

copy function strncpy(), supplied with exceedingly large size of characters via argv[1].

When the program executes a call via the function pointer in the line number 7, the

attacker’s code is executed instead of the original intended code.

The buffer, used by longjmp() function, contains control data. C99 defines the

setjmp() macro, the longjmp() function, and the jmp buf to bypass the normal func-

tion call and return discipline. The setjmp() macro saves its calling environment which

includes the program counter, the stack pointer, and the base frame pointer into the

jmp buf, for later use by the longjmp() function. The longjmp() function restores the
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environment saved by the most recent invocation of the setjmp() macro into appropriate

registers and jump to the location of the saved program counter. Since the longjmp()

function blindly fetches the saved program counter and jumps to the location, attackers

can change the saved program counter value to hijack the control flow of the program.

2.1.1.4 Global Offset Table(GOT)

The Global Offset Table(GOT) is another place where control data is stored in the

process address space. The position-independent code cannot, in general, contain ab-

solute virtual addresses. Global offset tables hold the absolute addresses in private

data. Addresses are therefore available without compromising the position-independence

and shareability of a program’s text. A program references its GOT using position-

independent addressing and extracts absolute values. This technique redirects position-

independent references to absolute locations.

Initially, the GOT holds the information, required by its relocation entries. After the

system creates memory segments for a loadable object file, the run-time linker processes

the relocation entries. The run-time linker determines the associated symbol values,

calculates their absolute addresses, and sets the appropriate memory table entries to

the proper values. Although the absolute addresses are unknown when the link-editor

creates an object file, the run-time linker knows the addresses of all memory segments

and can thus calculate the absolute addresses of the symbols contained therein.

If a program requires direct access to the absolute address of a symbol, that symbol

will have a GOT entry. Because the executable file and shared objects have a separate

GOT, a symbol’s address can appear in several tables. The run-time linker processes all

the GOT reloaction entries before giving control to any code in the process image. This

processing ensures that absolute addresses are available during execution.

The table’s entry zero is reserved to hold the address of the dynamic structure,

referenced with the symbol DYNAMIC. This symbol enables a program, such as the

run-time linker, to find its own dynamic structure without having yet processed its

relocation entries. This method is especially important for the run-time linker, because
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it must initialize itself without relying on other programs to relocate its memory image.

The system can choose different memory segment addresses for the same shared

object in different programs. The system can even choose different library addresses for

different executions of the same program. Nonetheless, memory segments do not change

addresses once the process image is established. As long as a process exists, its memory

segments reside at fixed virtual addresses.

Therefore GOT entry can be the target of control flow attacks. For instance, when a

program requests to use printf(), the run-time linker locates the symbol and the location

is then loaded into the GOT. After that the function is accessed via the Procedure

Linkage Table(PLT). GOT overwriting attacks modify a GOT entry to redirect it to

other code segment. For instance, an attacker can change the entry for printf() to

system() address to execute system() instead of printf() when printf() is invoked in the

process.

2.1.1.5 VPTR in VTable

In the object oriented program, virtual functions are used to intelligently change the

called function via late-binding. In the C++ program language, a virtual function is a

member function of a class, whose functionality can be over-ridden in its derived classes.

The virtual function is declared as virtual in the base class using the virtual keyword.

The virtual nature is inherited in the subsequent derived classes and the virtual keyword

need not be re-stated there. The whole function body can be replaced with a new set

of implementation in the derived class.

Whenever a program has a virtual function declared, a VTable is constructed for the

class. The VTable consists of addresses to the virtual functions for classes that contain

one or more virtual functions. The object of the class containing the virtual function

contains a virtual pointer that points to the base address of the virtual table in the

memory. Whenever there is a virtual function call, the VTable is used to resolve to

the function address. An object of the class that contains one or more virtual functions

contains a virtual pointer called the VPTR at the very beginning or the end of the object
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1 #include <iostream>

2 class A{

3 private:

4 char str[11];

5 public:

6 void setBuffer(char * temp){strcpy (str, temp);}

7 virtual void printBuffer(){cout << str << endl ;}

8 };

9 void main (void){

10 A *a;

11 a = new A;

12 a->setBuffer("coucou");

13 a->printBuffer();

14 }

Figure 2.4 Example of vunerable virtual function

in the memory. Hence the size of the object, in this case, increases by the size of the

pointer. This object contains the base address of the virtual table in memory. Note that

virtual tables are class specific, i.e., there is only one virtual table for a class irrespective

of the number of virtual functions it contains. This virtual table in turn contains the

base addresses of one or more virtual functions of the class. At the time when a virtual

function is called by an object, the VPTR of that object provides the base address of

the virtual table for that class in the memory. This table is used to resolve the function

call as it contains the addresses of all the virtual functions of that class. This is how

dynamic binding is resolved during a virtual function call.

Overwriting the VPTR works on the same basis as overwriting the function pointer.

An attacker can change VPTR to redirect control flow to crafted VTable to take the

control flow of the program. Figure 2.4 shows the code segment that is vulnerable to

VPTR overwriting. Class A contains a buffer, str in line number 4, and the string copy

function, in line number 6, to feed the buffer. An attacker can overflow the buffer with

three three types of information: the address of injected code, the injected code, and

the address that the VPTR will point to. After successful overwriting with the VTable,
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the injected code by the attacker can be executed when the virtual function is invoked.

2.1.1.6 Function Destructors in .dtors and exit funcs Sections

In the Linux environment, there are other places which hold the control data. The

GNU C compiler (gcc), and GNU tools in general, keep track of the initialization and

termination functions of a program by maintaining lists of pointers to them: .ctors

(constructors) and .dtors (destructors). When a program is executed, the functions in

.ctors are called, then main() is called and finally the destructors in .dtors are called.

The constructors and destructors are specified by the programmer as following:

Static void start(void) __attribute__((constrouctor));

Static void stop(void) __attribute__((destructor));

In the produced Executable and Linkable Format (ELF) executable images, this will

be represented as two different sections, .ctors and .dtros with the following layout:

0xffffffff <function address1> <function address2> ... 0x00000000

Both sections start with 0xffffffff and end with 0x00000000. Theses sections are

mapped in the memory in the process’ address space and writable by default. Also they

are allocated in the memory even though programmers do not set up any constructor and

destructor. Since constructors in .ctors are executed prior to the execution of program

main(), attackers are mainly interested in changing addresses of destructors in .dtors

section. Once attackers find programs that have been compiled and linked with GNU

tools, and place to store the shellcode until the program exits, it is relatively easy to

make successful CFA by overwriting the entry in the .dtors. By analyzing ELF binary

image, it is easy to determine the exact position in the memory.

Similarly, C99 defines a general utility function atexit() to registers a function to

be called without arguments at normal program termination. The registered function

address is presented in exit funcs structure. Hence it is possible to transfer control to

arbitrary code with an arbitrary memory write into the exit funcs structures. Even
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when the vulnerable program does not call the atexit() function, other destructors such

as the dl fini() and libc csu fini() are present in the exit funcs.

2.1.2 Attack Payload

So far, this thesis has examined different types of control data that can be the target

of attackers. Once attackers obtain control flow of a process by modifying the control

data, Attackers executes the malicious code called a payload to achieve the attackers’

desired goal. In this section, Two types of payloads are mainly examed mainly: injected

code and existing code.

2.1.2.1 Injected Code

Injecting malicious code is one of the favorite methods for attackers to take control

of the victim system after obtaining control flow of a program. The injected code is also

called shellcode in general because it typically starts a command shell from which the

attacker can control the compromised system. A shellcode can either be local or remote.

A local shellcode is used by an attacker to escalate its privilege on the local victim

system. When the local shellcode is successfully executed, it provides the attacker with

access right to the machine with the same privileges as the victim process.

A remote shellcode is used when the victim machine is connected with an attacker

via network connection. Upon the successful execution of the shell code, the shellcode

provides the attacker for accessing to the victim machine across the network. Typically,

the remote shellcode uses three types of connections: connect-back, bindshell and socket-

reuse. The connect-back shellcode connects back to the attacker’s machine. However,

because it leaves the trace of the attacker, it is less favorable to attackers. The bindshell

opens a certain port on which the attacker can connect to control it. A firewall can be

used to detect the outgoing connections made by the connect-back shellcode and the

attempt to accept incoming connections made by the bindshells. The third type is the

socket-reuse shellcode. it is used when the network port of the victim process is not

closed before the shellcode is run. The socket-reuse shellcode can reuse the connection
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#include <stdio.h> \xeb\xlf\x5e\x89\x76\x80

void main(){ \x31\xc0\x88\x46\x07\x89

char *name[2]; \x46\x0c\xb0\x0b\x89\xf3

name[0] = "/bin/sh"; \x8d\x4e\x08\x8d\x56\x0c

name[1] = NULL; \xcd\x80\x31\xdb\x89\xd8

execve(name[0], name, NULL); \x40\xcd\x80\xe8\xdc\xff

exit(0); \xff/bin/sh;

}

(a) (b)

Figure 2.5 (a) An example C code for spawning a shell and its binary code
(Linux/ x86)

to communicate with the attacker. Since it reuses the opened port, it may bypass the

firewall in the system. However it may harder for attackers to create the shellcode, since

the shellcode requires prior knowledge of the suitable port. The remote shellcode also

can download and executes malicious code in the victim system. This type of shellcode

does not spawn a shell, but it downloads a certain executable file from other machines

on the network.

In order to understand the shellcode mechanism, we further examined the details of

the local shellcode that has a basic feature and the smallest code size. Figure 2.5 (a)

shows the C code for spawning a shell code in X86 Linux platform and Figure 2.5 (b)

is the its equivalent binary code for working local shellcode. The shellcode basically

starts shell command via the execv() system call. In case of failing the execution of

execv(), the code exits normally with the exit(0) system call. An attacker generates the

optimized shellcode by performing reverse engineering on the C shellcode. We followed

the attacker’s logic for generating customized shellcode for the successful local shellcode.

The fist step for generating the shellcode is to identify the basic requirement for launching

the command shell. Attackers usually analyze the code in the assembly level to extract

the minimum requirement of the shell code to generate a working payload that has the

minimum size.
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The low level operations for the execv() in the code Figure 2.5 (a) are:

1. Copying 0xb(the system call number for execv()) into the EAX register

2. Copying the address of the string ”/bin/sh” into EBX

3. Copying the address of the name[] into ECX

4. Copying the address of the null pointer into EDX

5. Executing the software interrupt (int $0x80)

Similarly, the low level operations for the exit(0) can be identified and attackers can

put them together to make the body of the shellcode. The second step is to craft the

shellcode to make it as an injected payload. In order to make it as a working payload,

attackers need to solve a couple of problems. The first problem is to identify the location

of the string ”/bin/sh” dynamically. The attackers do not know the exact address of

the string during the attack. The second problem is to eliminate 0x00 or NULL in the

shellcode. Since attackers might use problematic functions such as the strcpy() to inject

code into the address of the victim process, the function might terminate copying process

when it meets the NULL byte in the binary sequence.

In order to identify the location of the string ”/bin/sh”, attackers use indirect jumps

and indirect calls. As we described before, when a call is issued, the processor pushes

the return address, PC + size of a call instruction, into the top of the stack. Therefore,

if the string is located right after a call instruction, the address of the string can be

obtained by popping the top of the run-time stack. There is another constraint for the

string: the string has to be located at the end of the shellcode so that the shellcode runs

correctly. Therefore, since the attacker knows the relative address of the call instruction

from the starting of the shellcode, attackers use indirect jump, which can use the relative

address to make a jump, to execute the call instruction which is located immediately

before the string. Since the indirect call instruction also can use relative addresses, the

attacker can call a pop instruction to obtain the location of the string. Therefore the

overall flow of the local shell code is:
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1. Jumping to the CALL instruction which is located before the string ”/bin/sh”.

2. Calling the instruction that pops the top of the stack.

3. Executing the body of the shellcode with obtained the address of the string.

Another requirement for the attack code is avoiding using NULL byte. Since the

strcpy() function stops copying the input when the function detects NULL byte. One of

the solutions for eliminating NULL byte is NULL byte substitution. Attackers make a

register value to be NULL without using NULL byte and substitute NULL byte with the

register. For instance, an attacker inserts the xor reg reg instruction, which makes reg

value to be NULL, right before the instruction that contains NULL byte and substitute

the NULL with the register reg. Figure 2.5(b) shows the final binary form of the working

local shellcode that does not contain NULL byte and uses both indirect jumps to obtain

the address of the sting. Similarly, attackers can generate other types of shellcode by

following the similar procedure given above and substituting the body of the shellcode

with the appropriate code.

2.1.2.2 Return-into-Lib(c) Exploits

Other types of the attack payload can be the existing library code in the system.

Using the existing code is commonly used to evade the protection offered by the non-

executable stack. Instead of returning into the code located within the stack, the vul-

nerable function returns into a memory area occupied by a shared library in the victim

system. The return-into-libc attack is achieved by crafting a stack frame and replacing

the origianl return address with a function address in the library. When the vulnerable

function returns, the execution will resume at the function in the library. This thesis

examines the three types of the return-into-libc attack by summarizing the methods

presented in [52]

Figure 2.6 shows the stack frame before and after an attacker generates the fake

stack frame for the return-into-libc attack. Figure 2.6(a) is the run-time stack layout

before the return-into-libc attack for a vulnerable function. Figure 2.6(b) is the run-time



www.manaraa.com

24

...

arg 2

arg 1

Return Address

Old Frame Pointer

Vulnerable Buffer

Stack 
Grows

Address
Grows

(a)

…..

arg 2

arg 1

dummy_int

Address of the 
function in lib

Buffer fill-up

Buffer fill-up

(b)

f2_arg1

Address of eplg

Address of f2

padding

f1_argn

...

f1_arg2

f1_arg1

Address of eplg

Address of f1

LOCAL_VAR_SIZE

Return address of the 
Vulnerable function

(c)

...

Address of
leave/ret

fake_ebp0

Buffer Fill-up

f1_args ...

Address of 
leave/ret

Address of
f1 in lib 

fake_ebp1

f2_args ...

Address of 
leave/ret

Address of
f2 in lib

fake_ebp2 ...

(d)

Figure 2.6 Stack Memory Layouts: (a) Before the Attack. (b) Single Re-
turn-into-Lib(c) Attack. (c) ESP Lifting Return-into-Lib(c) At-
tack. (d) Frame Faking Return-into-Lib(c)Attack.
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eplg: eplg:

addl $LOCAL_VARS_SIZE, %esp popl reg

ret ret

(a) (b)

Figure 2.7 Function epilogue for programs with -fomit-frame-pointer flag

stack layout for the single return-into-libc attack. When the vulnerable function returns

into the entry point of the library function, the dummy int becomes the return address

of the library function and arg1 and arg2 become arguments for the library function.

For example, an attacker can launch a command shell by using the single return-into-

libc attack. The attacker changes the return address of the vulnerable function with

the address of the system() function and also changes the arg1 with the address of the

string /bin/sh. In addtion to the changes, the attacker also properly sets the value of

dummy int. If the dummy int is the arbitrary value, it might generate a segmentation

fault error and leave the foot print in the system log file. Hence the dummy int is usually

set to the address of the exit() function to exit without remaining the foot print.

Attackers can also make chained return-into-libc attack by replacing dummy int with

the address of the appropriate code segment instead of the address of the exit()function

. In figure 2.6(c), when the library function returns, the instruction pointed by the

dummy int is executed. When attackers excavate the appropriate code, such as the func-

tion epilogue, and write the address as a dummy int, the following faked stack frame can

be used to make another return-into-libc attack which is called ESP lifting return-into-

libc attack. Figure 2.7 shows the typical function epilogue when a program is compiled

with a -fomit-frame-pointer flag. When the returning function has multiple arguments,

the function epilogue shown in figure 2.7 (a) can be used. When one argument is used for

the returning function only one pop instruction is sufficient to adjust the stack pointer

and return into the next function for the chained return-into-libc attack. Similarly,

when the frame pointer is enabled for the compiler, it is also possible to make appro-

priate faked stack frames for the chained return-into-libc attack. Figure 2.6(c) shows
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the stack layout for the ESP lifting return-into-libc attack. The faked stack frames are

used with the library function that has more than one arguments. When the attacker is

unable to find the function epilogue whose the size of $LOCAL VARS SIZE is the same

as the size of the returning function, the attacker may choose a code segment that has

the larger size of $LOAL VAR SIZE and insert pads into the fake stack frame. When

the first function,f1 in the library, returns to the designated function epillogue, the epli-

ogue adjusts the esp pointer to point the address of the function, f2, and jumps to the

f2 function. Similarly the attacker can generate the subsequence stack frames for futher

chained return-into-libc attacks.

Figure 2.6(d) shows the run-time stack frame for the chained return-into-libc attack

via the stack frame faking method. In this attack method, the return-into-libc attack

uses the leave, ret code sequence in the function epilogue. In the first faked frame, the

return address is set to return to the code segment,leave, ret. The leave instruction in

the first stack frame sets the EBP to the first crafted stack frame. The ret instruction

jumps to the function f1. When the function f1 returns, the leave, ret code sequence

in the second stack frame is excuted. Similarly, the second faked stack frame is used

for executing other existing code. Therefore attackers can generate several calls to the

existing code segments.

2.1.3 Attack Examples

Both the local and the remote CFA can be constructed with the different combina-

tions of control data types and payloads. In this section, the thesis discusses the three

different types of attack: the classical stack smashing attack, the remote CFA, and the

DLmalloc exploit. The first type of the attack, the classical stack smashing attack, takes

advantage of the buffer overflow vulnerability in a victim program to change the return

address of the vulnerable function. This type of the attack can also be used for the heap

based buffer overflow attack to escalate attackers’ privilege in the victim system. The

second type of the attack, addressed in [25], changes the entry of GOT entry to remotely

launch a malicious program via the format string exploit. The remote CFA also can be
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exploited locally. The third type of the attack is a DLmalloc exploit. In contrast to the

first two examples, the third example shows the way of modifying the target address

indirectly via the system routine which manages the heap area. The other two examples

overwrite the control data directly via the buffer overflow and the format string exploits.

2.1.3.1 Classical Buffer Overflow Attack

The classical stack smashing attack exploits buffer overflow vulnerabilities to over-

write the control data, the return address and the frame base pointer, in the run-time

stack. Buffer overflow occurs when the size of the data to copy exceeds the capability

of the buffer to store the data. From the viewpoint of security, it is a software flaw that

may lead to a severe system breach. The buffer overflow attack consists of three steps:

(1) injecting a piece of shellcode, (2) transferring the control flow of the machine to the

shellcode, and (3) opening the system to the adversary by the shellcode. In this type of

the attack, the adversary chooses a local data buffer of a procedure as the target. Since

the buffer resides in the program stack, overflowing the buffer can overwrite the return

address of the vulnerable function and the frame base pointer of the previous stack frame

which is also stored in the stack. This makes the second step happen when the system

transfers the control flow of the victim procedure to the previous procedure. The attack

payload is a usual part of the data copied into the buffer, but the attacker can reuse the

existing library function as the payload that are explained in the return-into-libc attack.

Figure 2.8 and figure 2.9 show the code used for exploiting buffer overflow vulnera-

bility in the root privileged program. In this example, an attacker uses two programs to

escalate its privilege from user to root. The user program called exe sets the environment

variable and executes the vulnerable root privileged program vul containing a buffer that

will be overflowed when the environment variable is copied into it.

The user program exe.c requires two arguments that are paths to the vulnerable

program to modify the address of the buffer and to smash the buffer in the vulnerable

program. An attacker may identify the location of the vulnerable buffer with a few tries.

With the address of the vulnerable buffer, the exe fills the address of the vulnerable
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#include <stdio.h>

#include <stdlib.h>

int main(int argc, char **argv){

char buffer[96];

strcpy(buffer,getenv("ENV"));

return 0;

}

Figure 2.8 Vulnerable Root Privileged Program (vul.c)

#include <stdio.h>

#include <unistd.h>

extern char **environ;

int main(int argc, char **argv){

char lg_string[128];

long *lg_ptr = (long *)lg_string;

int i;

char shellcode[] =

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"

"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"

"\x80\xe8\xdc\xff\xff\xff/bin/sh";

for (i = 0; i < 32; i++)

*(lg_ptr + i) = (int) strtoul(argv[2], NULL, 16);

for (i = 0; i < (int) strlen(shellcode); i++)

lg_string[i] = shellcode[i];

setenv("ENV", lg_string, 1);

execle(argv[1], argv[1], NULL, environ);

return 0;

}

Figure 2.9 Malicious User Privileged Program (exe.c)
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buffer into the lg string. Then the shellcode is copied at its beginning of the lg string.

Finally, execle() is called, so that the called program will have the corrupted environment

variable. Note that the shell code including the address of the vulnerable buffer is already

resided in the environment string section in the run-time stack of the vulnerable program

before executing the main().

2.1.3.2 Hannibal Attack

The next example is the hannibal attack, addressed in [25], which hijacks the control

flow of the ftp server, wu-ftpd, running on Red Hat Linux 6.2 in the Intel processor.

The hannibal attack uses a return-into-libc attacks to thwart the non-executable pages

protection. The hannibal attack takes advantage of the Procedure Linkage Table (PLT)

and the Global Offset Table (GOT) in the Linux system that provides calls to dynami-

cally linked library functions. As we examined GOT in previous section, GOT contains

the absolute address of the dynamically linked library’s functions. In order to resolve

the absolute address during run-time, ELF binary executable contains PLT. Figure 2.10,

the popular C program, exhibits the use of a PLT and GOT.

In the .plt section of ELF binary, the PLT entry for printf() is statically bounded.

Figure 2.11 shows the disassembled binary which is generated from gcc-3.4.6 for the

PLT entry for the printf(). The location of 0X08482b0 is statically bounded to printf()

PLT entry. When the printf() is called from the main(), the program jumps to the PLT

entry of the printf(). The first instruction of the PLT entry is indirectly jumping to the

target address which is loaded from corresponding GOT entry stored at 0X08049574. If

the absolute address of the printf() is not resolved yet, the GOT entry contains the next

PLT instruction address 0X080482b6. It pushes the identifier of the pritnf() and jumps

to the function to resolve the symbol address and update the GOT entry for printf() in

the memory location at 0x08049674. Once the entry is updated, the first instruction of

the PLT jumps to the printf().

The main technique of the hannibal attack replaces GOT entry of the publicly avail-

able function rename() in the daemon with the execv() function. The vulnerable wu-ftpd
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#include <stdio.h>

int main(){

printf("Hello World\n");

return0;

}

Figure 2.10 An example of C code for printing ”Hello World”

080482b0 <printf@plt>

80482b0: jmp *8049574

80482a6: push $0x0

80482ab: jmp 8048290 <_init+0x18>

(b)

Figure 2.11 Disassembled PLT entry for the printf()

daemon accepts commands RNFR and RNTO that accepts the source and the target

file names to be changed accordingly. The first step of the attack uploads the malicious

program into an anonymous FTP server and writes the GOT entry of the rename() func-

tion’s address with the address of the PLT entry of the execv() function. When RNFR

and RNTO commands are issued, the victim wu-ftpd daemon stores the file names and

executes the rename() to change the file name. Since the GOT entry of the reanme()

is replaced with the address of the PLT entry of the execv() via the format string ex-

ploit, it executes the execv() function instead of the rename() function. By crafting the

heap memory area of the wu-ftpd program, the attacker can successfully execute the

uploaded malicious program. Hence the attacker can executes arbitrary program with

the privilege of the wu-ftpd daemon.

2.1.3.3 DLmalloc Exploit

In the Linux environment, GNU Libc adopts Doug Lea’s memory allocator algorithm

for the heap memory area management. The goals of the algorithm is to maximize the

portability and the compatibility. It also tries to maximize the locality of the allocated
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memory chunks so that it can minimize the fragmentation and the cache misses during

the program execution. It also considers minimizing the memory space used by the

allocator and minimize the time for allocation and deallocation of the memory chunks.

In order to achieve the before-mentioned goals, the allocation algorithm keeps track

of the free chunks of the memory by using a binning system. It stores free chunks in

128 bins. In each bin, free chunks of memory locations are stored as doubly linked list

structure. In the first 62 bins, called small bins, chunks of the exact size are stored. The

remaining bins store chunks in a particular range. DLmalloc uses macros to manage the

binning system. Since these macros do not check the validity of the information stored

in the memory chunk structure, CFAs exploit the vulnerability to write the arbitrary

memory location. Figure 2.12 shows the memory layout for an allocate chunk and a

free chunk. The prev size is the 4-byte field to store the size of the previous chunk if

the previous chunk is free. If the previous chunk is not free, this field is overwritten

by the user data of the previous chunk. Each chunk size is multiple of 8-byte and the

2 bits from the least significant bit in the size field are used as flags. One of the flag,

PREV INUSE is used to identify if the previous chunk is allocated.

When the deallocation function, free(), is called, the algorithm frees up an allocated

chunk and adding it into the binning system. If the neighboring chunks are free, the free

chunks are coalesced into a larger free chunk. When the binning system coalesces the free

chunks, the neighboring free chunks are unlinked from the binning system. Figure 2.13

presents the macro code for unlink a chunk of memory from the binning system. In the

line 4 and 5, the value in the memory locations are modified.

Attackers can specify FD as the arbitrary location in the memory and the BK as

the arbitrary value. For example, an attacker can specify the FD as the location of

the GOT entry, and BK as the address of the malicious code to be executed when

the function in the GOT entry is called. Figure 2.14 shows the example code that

overflows heap data structure to execute the shellcode. There are two memory chunks,

*vul and *p, are allocated next to each other. When an attacker overflows the *vul to

overwrites the pre size field of the *vul structure, the memory chunk *p is set to be a free
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Figure 2.12 Memory Layout for Chunk in Heap

1. #define unlink( P, BK, FD) { \

2. BK = P->bk; \

3. FD = P->fd; \

4. FD->bk = BK; \

5. BK->fd = FD; \

6. }

Figure 2.13 Unlink() macro in DLmalloc
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1. #include <stdio.h>

2.

3. int main(void){

4. char* vul = malloc(768);

5. char* p = malloc(64);

6. scanf ("%s", vul);

8. free(vul);

9. free(p);

10. return 0;

11. }

Figure 2.14 Sample Code for Demonstrating DLmalloc Explot

chunk. Therefore when the free(vul) is called, the unlink() macro is called to coalesce

the chunks. Consequently, in order to achieve the successful CFA, attackers need to

generate overflowing data with following forms:

• overwrite size field of *vul so that the memory chunk *p is designated as free chunk

• overwrite BK field of *p with the start address of malicious code. (i.e. shellcode)

• overwrite FD field of *p with function pointer (i.e. GOT entry of free()

• inject shellcode

Similarly, since the frontlink() macro, which inserts a free chunk into the binning sys-

tem, also modifies a pointer and its value without checking the validity, CFAs can exploit

the vulnerability to write arbitrary value into arbitrary memory location. Figure 2.15

shows the frontlink() macro.

The frontlink() macro inserts P, whose size is S and pointers FD and BK, into bin

IDX. The else statement, in the line 1, is executed when the free chunk P has larger size

than the small bin size. The while loop, in the line 2, the largest FD that is smaller than

the size S. In the line 4, BK is assigned FD->bk. And in the line 5, fd fields of BK is set.

Consequently, it assigned P into (FD->bk)->fd. Therefore, if attackers create a FD with
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#define frontlink( A, P, S, IDX, BK, FD ) { \

if ( S < MAX_SMALLBIN_SIZE ) { \

IDDX = smallbin_index( S ); \

mark_binblock( A, IDX ); \

BK = bin_at( A, IDX ); \

FD = BK->fd; \

P->bk = BK; \

P->fd = FD; \

FD->bk = BK->fd = P; \

1 } else { \

IDX = bin_index( S ); \

BK = bin_at( A, IDX ); \

FD = BK->fd; \

if ( FD == BK ) { \

mark_binblock(A, IDX); \

} else { \

2 while ( FD != BK && S < chunksize(FD) ) { \

3 FD = FD->fd; \

} \

4 BK = FD->bk; \

} \

P->bk = BK; \

P->fd = FD; \

5 FD->bk = BK->fd = P; \

} \

}

Figure 2.15 Frontlink() macro in DLmalloc
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bk being a function pointer location, then BK->fd would allow attacker to overwrite the

function pointer with arbitrary value which can be the location of malicious code.
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2.2 Related Works

After the Morris worm incident in 1988, the security in computing system was warned

to be enhanced. However, until the Code Red Worms had breached system security suc-

cessfully, the computing system security was not favorable subject to be thoroughly

studied by computing researchers. More than 359,000 computers were infected with the

Code Red Worm in less than 14 hours on July 2001. The economic costs resulting from

the Code Red Worms’ attack were estimated to be over $2.4 billion. This incident im-

mediately brought the attention of the security researchers and encouraged to develop

various defense mechanisms to protect computing systems. However the proposed secu-

rity solutions provide limited protections which are dedicated to certain attack methods.

Some of them also have difficulties on implementing in the real world.

As before-mentioned, the control flow attack is composed of three stages: overwrit-

ing control data, transferring program control to the malicious code and executing the

malicious code. One of the solution removes the software vulnerabilities and the other

prevents one of the stages in the CFAs. Hence the solutions which prevent control flow

attack can fall into one of the following categories:

1. Removing software vulnerability

2. Detecting illegal modification of control data

3. Preventing execution of malicious code.

4. Preventing illegal control transfer to malicious code

The first type of the defense mechanisms are the compiler patches and the middleware

that remove the software vulnerabilities such as lack of bounds checking of the memory

object or using dangerous functions. However these type of approaches provide the

limited security protections and have the software incompatibility problems.

The second type of the defense mechanism prevents or detects the illegal modification

of the certain types of the control data. Due to the limited protection of control data type
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and the existence of the various types of control data, hackers immediately published

various ways to defeat the propoesed protection methods.

The third type of the defense mechanism prevents the execution of the malicious

code in the victim system. Since, the payload was mainly injected in the program

memory space during the modifying control data, the control flow attack can be folded

by prohibiting the execution of the injected code. In order to inject the malicious code

in the victim program memory space, the memory space must be writable. However the

normal program code resides in the read only memory area. Consequently, by prohibiting

the code execution from the writable memory space, some of the control flow attacks

can be prevented. The solution seemed to be promising and the major processor vendors

adopted the mechanism and provided a hardware support for the defense mechanism.

However, attackers developed a new type of attack called return-into-lib(c). As we

examined before, the attack reuses existing code in the system library, which resids in

the read only memory area, to achieve the malicious goals.

Although the third type of defense mechanism limits the large portion of control flow

attacks, attackers can still bypass the defense mechanism. Hence security researchers

took more efforts to find the root cause of the control flow attack. Since the root cause

of the control flow attack is that attacker can make control transfer to malicious code

by crafting control transfer data, the last type of defense mechanism is to detect illegal

control transfer to malicious code. By monitoring problematic control transfer in the

vulnerable program, control flow attack can be detected and halted. This type of defense

mechanism is more generic and its effectiveness does not bound to certain type of attack.

However monitoring all the problematic control transfer is challenging and imposes high

performance or implementation overheads. In this section, we further introduce more

details on the four types of defense methods for protecting a system from control flow

attack.
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2.2.1 Removing Software Vulnerability

A number of different projects have addressed the buffer overflow problem with dif-

ferent approaches. One approach eliminates vulnerable code from a source program and

helps the application to be safe from the software vunlerabilities. There is an auditing

tool [69] that provides the automate source code review for security. It helps to eliminate

the use of dangerous functions such as strcpy, gets, and etc., but the tool has the limited

vulnerability detection; it is not able to check the boundaries of a pointer variable.

Software bounds check [40] verifies the bounds of each pointer object to prevent

buffer overflow attack. It is the modification of front-end of GCC compiler to add

code to check pointer arithmetics and to maintain a table of known allocated storage

region. The performance overhead depends on the application type but it can incur

performance overhead up to 30 times slowdown for the matrix applications. Recently,

Weihaw et al [20] proposed checking limited type of pointer object, that receives data

from network, to reduce performance overhead. However other overwriting method such

as the format string attack cannot be prevented.

Libsafe [12] is based on a middleware software layer that intercepts all function calls

made to the vulnerable library functions. Libsafe redirects the dangerous function calls

to the substitute version of the corresponding function which implements the original

function. For instance, when a program calls unsafe call gets(string), Libsafe intercepts

the call and executes its own version of gets. This new version of gets() computes the

length of the buffer, string and calls fgets(string, size, stdin). The fget() is much safer

than gets() since it only allows the stated number of characters to be read into the

buffer to prevent the buffer overflows. Similarly calls to the other unsafe functions are

redirected to the safe version of functions. However, Libsafe has a few drawbacks; it is

not compatible with applications that have been linked with the certain version of the

shared library, libc5. It cannot catch overflows in statically compiled programs since

Libsafe works by intercepting calls to shared libraries. Similarly, when a function is

included as the inline function, it cannot catch the overflows. The other drawback is

that Libsafe may not work with the setuid programs since the setuid programs ignore
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LD PRELOAD that is required to load Libsafe to intercept function calls.

2.2.2 Detecting Illegal Modification of Control Data

The first attempt to prevent control flow attack is StackGuard [24]. The compiler

technique inserts protection tags, called canary word, before the control data in the

run-time stack, and verifies those tags before the control data are used during function

prologue and epilogue. The control data may also be encoded to thwart the attempts

to change them. StackGuard only protects the stack smashing attack, that modifies the

return address in the run-time stack by overflowing the vulnerable buffer in the victim

program stack. Since the buffer overflow attack, also called stack smashing attack, over-

flows a vulnerable buffer to overwrite a return address in the run-time stack. When stack

smashing occurs, the data between the return address and the vulnerable buffer is also

overwritten. Therefore, StackGuard inserts a canary word next to every return address

in the run-time stack, and verifies the canary value before the return address is used.

When the canary word is changed, it detects the stack smashing attack. However hack-

ers immediately pointed out the weakness of the defense mechanism by demonstrating

a number of different methods to bypass the protection mechanism. Hence PC Encod-

ing [57] were proposed to compensate the deficiency by encrypting the return address

during the function prologue, and recovering the original value before using it during the

function epilogue. It uses the simple symmetric encryption routine that simply XORing

the return address with an encryption key. Therefore, without knowinga the key of the

encryption, attackers cannot make control transfer to the malicious code. Consequently

these mechanisms can successfully prevent stack smashing attack. However, this defense

mechanism has a few limitations. It only provides limited protections; it is only capa-

ble of protecting the control flow attack that modifies the certain control data, return

address andbase frame pointer. The compiler patches also requires source code recompi-

lation to insert security routines for the manipulations of the return addresses and the

run-time stack structure.

StackShiled [4] and RAD [16] are other types of compiler techniques that monitor the
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illegal modification of the return address. They create a separate stack to store return

addresses during the function prologue and check the integrity of the return addresses

in the run-time stack before using it. The redundant copy of the return addresses are

kept in a secure place in the memory, and is compared with the return address before

the address is refered from the run-time stack. Again they can only protect a system

from a certain control flow attack that modifies return address in the run-time stack.

Propolis [28] protects not only return addresses but also function pointers in the run-

time stack by rearranging the stack to place a vulnerable buffer to the highest part of

the stack frame. It also creates copies of arguments of the function and relocates them

together with local variable to protect the arguments. It was implemented as a patch to

GCC 3.x and included in the GCC 4.1.

There are also hardware defense mechanism for preventing the control flow attack

via the return address corruption. Secure Return Address Stack(SRAS) [55] is the

security enhancement for the existing hardware return address buffer, which predicts the

target of a return instruction. In most programs, function calls and returns are always

paired. When a call instruction is issued, the return address, which is the program

counter(PC) + size of call instruction, is pushed into the return address buffer. When

a return instruction is issued, the top of return address buffer is popped to predict

the next instruction to be fetched. The hardware can identify the correctness of the

prediction when the return instruction is retired. Consequently, by enhancing the return

address buffer to predict a return address accurately, the hardware can detect the illegal

modification of the return address.

2.2.3 Preventing Execution of Malicious Code

Another type of control flow attack defense mechanism is to prevent executing the

malicious code. Since the large portion of CFAs uses injected code as its payload,

preventing execution of data, or code in the writable memory can effectively prevent

CFAs using the injected payload. Solar Designer [26] has developed a linux kernel patch

that makes the run-time stack non-executable. The patch is a part of openwal project
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that address the stack smashing problem. This patch makes the run-time stack portion

of a user process non-executable, so that the injected code into the stack cannot be

executed. The patch offers the advantage of zero performance penalty without the

recompilation of the target program. However it fails to address the problem of buffer

overflow attacks that do not place the attack code on the stack. The attacker may

inject the attack code into a heap-allocated or statically allocated buffer, and redirect

the function address or function pointer to point to the attack code. Moreover, the

non-executable stack cannot detect the return-into-libc attack.

PaX [3] is a patch for the Linux Kernel that implements least privilege protections for

memory pages. It flags data pages as non-executable and code pages as non-writable. It

also randomly arranges the program memory space. PaX basically employees two mech-

anisms to prevent malicious code execution in a victim system: non-executable pages

and address space layout randomization(ASLR). Non-executable pages are enforced by

PAGEEXEC and SEGMEXEC mechanisms with the restricted mprotect() function.

PAGEEXEC uses or emulates the no-execute(NX) bit. On processors that supports

the hardware NX bit, PaX utilizes the NX bit without incurring the performance over-

head. If a hardware NX bit is not available, NX bit emulation is done by changing the

permission level of non-executable pages. It uses the semantics of the memory manage-

ment unit and the page attributes to enforce non-executable pages. The supervisor bit

in the page table entry is overloaded to represent the non-executable page. SEGMEXEC

emulates the functionality of an NX bit on x86 processors by splitting the address space

in half and mirroring the code mappings across the address space. PaX guarantees

that the physical page cannot have both writable and executable page attributes at the

same time. It does not allow a memory page to have permission PROT WRITE and

PROT EXEC both enabled by restricting the use of mprotec(). Also, it prohibits a

memory page to be masked with PROT EXEC after the page attributes are initialized.

This prevents a memory pages, which may contain injected code, from being changed

to both writable and executable page. The ASLR is a mechanism that prevents the

arbitrary execution of code, or return-into-libc attacks.
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PaX randomizes the stack base and the heap base in the virtual memory when the

ASLR is enabled so that attackers cannot guess the addresses of functions in the shared

library. It also optionally randomizes the mmap() base and the executable base of a

program. PaX leaves a portion of the addresses out of the randomization calculations

for avoiding the address space collision of the stack, the heap and the shared library.

However, PaX is still vulnerable to the format string exploit that reveals the contents of

the random memory location. Hence attackers can obtain the base address of libc for a

successful return-into-libc attack. PaX tries to prevent a borad range of the CFAs that

results in making the system more complex. Later, a critical vulnerability, which may

lead privilege escalation, was also found in PaX itself.

2.2.4 Preventing Illegal control transfer to Malicious code

So far, this thesis has examined the various control flow mitigation mechanisms

that focus on thwarting an individual attack methodology. Therefore these mechanisms

usually provide the limited security protections. Security researchers have made great

effort to find more generic approach to detecting CFAs. There are two basic mechanisms

to prevent illegal control transfer to a malicious code: validating control transfers and

tracking the dynamic information flow in a program. The control transfer validation

checks the source and the target of a control instruction. One of the validation approach

applies general security policies to verify the legitimacy of the control transfers. Another

validation approach checks the source and target pair with pre-defined source and target

pairs to attest thier integrity.

The dynamic information flow tracking mechanism tracks the origin or the integrity

of the control data. This mechanisms scrutinize the semantics ofa the control flows in

programs to find anomalies in the use of the control data. For instance, since the control

data is originated from the I/O during the control flow attack, prohibiting the illegal

control transfer, which refers the control data from I/O, prevents the control flow attack.

The following subsections introduces the details of the related works.
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2.2.4.1 Validating Control Transfer

Program Shepherding [44], derived from DynamoRIO run-time optimizer, detects

the unauthorized control transfers. DynamoRIO translates executable binaries and gen-

erates code blocks to apply dynamic optimization techniques. In order to achieve low

performance overhead, DynamoRIO uses a software code cache to support the native

execution of the newly constructed fragments. When the control transfer occurs, the

part of DynamoRIO code obtains the program control and dispatches the subsequence

instructions from the code cache. Since the address of instructions in the code cache

differs from the address in the original binaries, it requires the address translations to

identify the target location. Therefore DynamoRIO can identify the control instructions

and verify the control transfers.

It establishes general security policies: the restricted code origin, the restricted con-

trol transfer, and the un-circumventable sandboxing. The code origin check is done at

the point when the system copies a basic block into the code cache. The check needs

to be executed only once for each basic block. It identifies whether the code has been

modified from its original image on disk or dynamically generated. In order to validate

control transfers, the direct branches are checked at the time of linking the basic blocks.

For indirect branches, the hash table lookup routine translates the address of the target

code segment into a basic block entry address. At this point, it enforces the general

policies for the indirect branches. The targets of indirect branches are matched against

the entry points of PLT-defined and dynamically resolved symbols to enforce restrictions

on inter-segment transitions, and target of returns are checked to ensure that the target

is an instruction after a call site. In order to prevent jumping into middle of a block to

bypass the checks, It only allows the control flow transfer to the top of basic blocks or

traces in the code cache. Program Shepherding is implemented on a dynamic optimiza-

tion infrastructure, which is an additional software layer between a processor and an

application. As a result, Program Shepherding may have high performance overheads.

The space overhead is reported to be 16.2% on average and 94.6% in the worst case. It

also incurs up to 7.6 times performance slowdown for a benchmark program.
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Inline Reference monitor(IRM) is also able to validate the execution of every branch

instruction with the valid control flow information of the program. CFI [8] is software

fine-grained control flow integrity checking mechanism. It instruments the program exe-

cutable to insert a label immediately before each function or a code block. Every indirect

branch instruction is also rewritten as a small piece of code that checks the label before

the control transfer. The labels are constructed from static analysis of the control flow

graph (CFG) of the program. It has a few drawbacks, in certain cases, the use of label

cannot preserve the precise CFG information; for example, if two indirect branches share

one target (and the associated label) but not other targets. It may weaken the security

strength. Another drawback is that CFI changes the source code by using binary instru-

mentation tools. The source code modification may affects the trustworthiness of the

program execution and may lead a complication of the adoptation in the practice. The

overhead is non-trivial; up to 50% and on average 21% for SPECCPU2000 benchmarks.

A hardware version of CFI with ISA extension [13] is also proposed to reduce the

performance overhead. New instructions are introduced to replace the guard code with

a single instruction. In the initial performance evaluation, five integer benchmarks from

SPEC CPU2000int are observed with test input set. They reported that the results

showed maximum 7% performance overhead and around 2% on average. Nevertheless,

the aforementioned issue of label sharing still exists.

2.2.4.2 Dynamic Information Tracking

The software based information flow tracking systems usually incur high performance

overhead. LIFT [58] is a software information flow tracking system which utilizes binary

instrumentation tools. It tags each byte in data memory to identify the unsafe data that

comes from other source rather than the one program generates and tracks the data.

When the unsafe data is used as control data, the system raises an alarm. Although it

achieves best performance among software based information flow tracking systems, it

still incurs 3.6 times slowdown on average.

Another form of hardware protection can prevent attacks to all memory regions but
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requires the extensive changes of the CPU internals. Suh et al. [65] proposed dynamic

flow information tracking that tracks every data in the memory to detect and track

the spurious data that comes from external I/O. It tracks the information flow inside

modified hardware and checks the authenticity of the control data by tracking four types

of dependencies: copy, computation, load-address, and store-address dependencies. The

modified processors dynamically tracks spurious information flows by tagging the result

of an operation as spurious if it has a dependency on spurious data. As for the hardware

changes, an one-bit tag is required for every memory data, CPU registers, and CPU data

paths changes to propagate the tags during the address calculation. When suspicious

data is used as control data, it raises an alarm.

Crandall and Chong [25] proposed Minos that also tracks the information flow in

program execution using one-bit tags. In order to track the integrity bit, it also requires

hardware modification similar to the one in [65]. However, instead of tagging spurious

data rooted from I/O, Minos decides the high integrity data, which can be used as control

data. An alarm will be raised if a low-integrity data is used as a target address. In the

Minos implementation, there is a set of rules to decide high integrity data. For instances,

high integrity data is created before which all libraries and trusted file were established.

Everything created after the establishment time is marked as low integrity. The static

binaries can be trusted and their control flow and that of their children are marked as

the high integrity data. Any process communication is marked as the low integrity data

except the communication using the shared memory. Also the read() system call forces

the data read by the process to be the low integrity data unless both the ctime that is

the time when changes were made to inode and mtime that is the time when the actual

contents of a file was last modified, are set before the establishment time. Additionally,

the argument variables of the execv() system calls are forced to be the low integrity data.

Minos successfully prevent various control flow attacks on emulated environment.
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3 IBMON: System-level Approach for Run-time Control Flow

Validation

As beforementioned in section 2.1, it is hard to protect a system against all types

of control flow attacks by protecting each type of control data, since there are various

types of control data and various system entities that manage the control data. Also

combining various protection mechanisms to protect the different types of control data

makes security system more complex. Unfortunately a complex system tends to contain

bugs that lead to attacks on the system itself [3].

Control flow validation is an effective approach to mitigating control flow attacks.

This thesis proposes an efficient control flow validation mechanisms to detect and prevent

malicious actions. The control flow graph information is pre-collected through the static

analysis of a program or the dynamic program profiling. A recent work implements such

a mechanism by instrumenting the program binary code: machine instructions doing the

validation are inserted before branch instructions [8]. The target of an indirect branch is

allocated dynamically in the data area of the program’s address space, and an attacker

can manage to overwrite it by exploiting the memory corruption vulnerabilities such

as the stack smashing, the format string, and the heap overflow vulnerablities. Later

the execution of the compromised indirect branch gives the attacker great flexibility to

re-point the control flow to any any code segment that the attacker desires. Hence, any

control flow transfer by an indirect jump should be validated before the architecture ac-

tually uses it. It is sufficient to validate only indirect branches that use register contents

as branch targets to thwart the CFAs, because only those branches use the control data

stored in the memory. The approach can prevent most control flow attacks, but there are

several concerns regarding the implementation. First, in order to validate efficiently at
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run-time, an indirect branch has to be validated with a control flow graph of simplified

structure, which may reduce the strength of validation. Second, the inserted instructions

increase the program execution time and affect instruction cache performance, which are

non-trivial overhead.

There are two notable related works that are monitors the control transfers in tar-

get applications: Program Shepherding [44] and CFI [8]. The Program Shepherding

uses dynamic optimization tools to identify the problematic control transfers. Due to

the performance overhead of the validation mechanism it performs the dynamic opti-

mizations. However, it still incurs up to 7.6 times performance slowdown in a certain

application. It only protects malicious control transfer to injected code or middle of

the program routine. This may not prevent mimicry attacks, which jump to legitimate

entry point of routine such as return-to-libc attack, due to lack of the location sensitivity

or precision. CFI checks the label embedded immediately before the targets of indirect

branches. Since each indirect branch has unique label due to limitation of the binary

instrumentation technique, the use of the label cannot attest indirect branches precisely.

This thesis explores the possibility of implementing simple and effective control flow

validation mechanism by using emerging features in commercial processors. Based on

the commercial hardware features, we have implemented a prototype, called Indirect

Branch MONitor (IBMON), with Linux-2.6.27 on Intel Core 2 Duo, Core i7 processors

and Linux-2.4.20 on Intel Pentium 4 processor. The experiments show that the system

can prevent the various types of the control flow attacks. IBMON takes advantage of that

the corrupted indirect branch target always causes the indirect branch mis-prediction.

IBMON detects the hardware branch mis-prediction events by using the hardware mon-

itoring features. IBMON works efficiently because the indirect branch instruction ratio

and the indirect branch mis-prediction rate are both low for almost all real-world pro-

grams. The branch prediction unit of modern processors is well designed to minimize the

branch mis-prediction rate. Compared with the binary instrumentation, the frequency

of validation in IBMON is dramatically reduced and it is simpler and more efficient.

However there are a few issues to implement efficient IBMON on commercial processors.



www.manaraa.com

48

The key issue in this method is to limit the performance overhead of interrupt-based

validations. The following sub-sections describe details of these hardware features and

discuss the collection strategy of control flow information.

3.1 Hardware Components and Control Flow Information

IBMON monitors the dynamic control flow of a system to prevent control flow attack

without modifying the code of the target applications. IBMON relies on two hardware

features available in modern processors: hardware branch prediction and hardware per-

formance monitoring. We observe that it is sufficient to detect most control flow attacks

by validating only mis-predicted indirect branches. Furthermore, the hardware perfor-

mance monitor on most processors can be configured to raise an interrupt upon branch

mis-predictions events. Therefore, it is promising to build an efficient control flow mon-

itoring system on the top of the two hardware features.

3.1.1 Hardware Performance Monitoring

IBMON utilizes hardware features in order to inspect indirect control transfers with-

out recompiling program binary or special execution environment. Recent Intel pro-

cessors provide hardware performance monitoring and debug features. The hardware

performance monitor provides a number of different architectural and non-architectural

hardware events.

In the NetBurst microarchitectures, Pentium 4, retired mis-predicted indirect branch

events can be counted by setting a set of the appropriate machine specific registers(MSRs) [37].

Upon a counter overflow event, the processor is capable of generating an interrupt to

reset the counter value. Hence, upon an indirect branch mis-prediction event by setting

the counter value to max-1 or using a feature that forces to generate an interrupt on

single event, IBMON is able to obtain control of a system and verifies the source and

the destination addresses of the indirect branches.

However, since the interrupt is imprecise, the interrupt is usually delivered a few

cycles later; the program counter value may not be the address of the indirect branch
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instruction which generates the mis-prediction event. Therefore, IBMON uses another

hardware debugging features, called Last Branch Recording(LBR). This feature provides

recording the source and destination addresses of the last taken branch, exception and

interrupt in the hardware stack. Since all indirect branch events are taken branches,

IBMON accurately obtains the source and the destination addresses of mis-predicted

indirect branch. Hence, the control flow information is collected from the LBR stack to

be validated when indirect branch mis-prediction events occur.

Similarly, Core and Nehalem micro architectures (Core 2 Duo, Core i7) also pro-

vides those features, but they only can count executed mis-predicted indirect branch. 1

The difference between retired and executed is that executed means the mis-predicted in-

structions are not necessarily retired i.e the instructions may be bogus(mis-speculated).

It results counting more mis-predicted indirect branch instructions than actual retired

mis-predicted indirect branch instructions. However this does not waken the security

strength of detecting CFAs, but increases the validation frequency.

3.1.2 Hardware Branch Predictors

IBMON is an interrupt-based control flow validation system. Hence the valida-

tion frequency is one of the major component that affects the performance. Hardware

branch predictors help reducing the validation frequency without degrading the security

strength. Recent commercial processors employ different types of branch predictors to

enhance the performance of the processor.

Return Stack Buffer(RSB) is used to predict the destination of a return instruction

in x86 architecture. When a call instruction is issued, the address of the after the call

instruction is pushed into the RSB. When a return instruction is issued, the top of the

RSB is popped to predict the next instruction to be fetched. The processor compares the

predicted destination address and the one stored in the run-time stack in the memory

to validate the prediction result. If the prediction is wrong, the processor squashes the

1we also explored other hardware features such as precise event sampling with LBR mechanism [37]
to efficiently collect the source and target addresses. It turns out that this method is the most efficient
in the Intel processors
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pipe line and re-fetches instructions from the destination address in the run-time stack.

Hence if the destination address in the run-time stack is tempered, it always results in the

return address mis-prediction. Thus this guarantees that IBMON inspects the tempered

destination address in the run-time stack. Note that an untempered destination address

may not result in the return address mis-prediction and does not need to be validated

by IBMON.

Currently, most microprocessors also have other type of branch prediction facility,

branch target buffer (BTB). Some processors have the enhanced support for indirect

branch prediction. We notice that branch predictors many processors can be used for

doing a portion of validation in the form of indirect branch prediction. The branch

predictors store the previously executed branch to predict the target of a branch in-

struction for the future execution. Hence, branch prediction can be used for the part

of the validation of indirect branches. Note that all the branches stored in the branch

predictor have been validated before due to the cold misses. Since the validation unit

checks every target before it is loaded into the program counter, the targets presented

in the branch prediction units have passed the validation in the first place. This implies

a control flow transfer from a correct branch prediction is guaranteed to be safe. On the

other hand, during an attack, the target address in the memory is corrupted and will

not match the validated one in the branch prediction units, resulting in a mis-prediction.

Notice that while an attacker is able to overwrite a value in memory due to all kinds

of vulnerabilities, it cannot directly compromise the content in the software-transparent

prediction units at the same time. Consequently, a mis-prediction event of an indirect

branch becomes a symptom of an attack and the validation can be activated only on

that event, rather than every instance of indirect branches.

Utilizing branch prediction results in reducing the frequency of the control flow val-

idation by checking only when the branch predictor predicts the target incorrectly for

indirect branch. Consider a simple example: A program has a simple loop that calls a

function via indirect function calls over million times. Then binary instrumented ap-

proach may need over twice as much as the number of function calls; every function calls
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and returns. However, our design requires less number of validations, since branch pre-

dictor can accurately predict the targets most of the times. Modern high-performance

processors have accurate branch predictors, whose prediction accuracy is usually over

95%, and branch mis-predictions are exceptions. Because our system only do validations

when indirect branch mis-predictions happens, unnecessary validations are avoided.

3.1.3 Indirect Branch Pair (IBP)

In order to attest control flow integrity of a program, an indirect branch and its target

address pair(IBP) are checked with pre-generated valid set of address pairs. Including

both the branch and the target address is necessary not only for preventing control flow

from transferring to an unintended destination but also intercepting a jump heading to

a legitimate target but from an illegal source site.

There are basically two ways to fill up the IBP table with legitimate IBPs. The one

way to obtain IBPs is via the static analysis of the control flow graph of the program.

One may extract the legitimate IBPs from the existing execution trace of legacy code

offline [33, 63] too. For the dynamically loaded library and the shared libraries, the

linker and loader can help finding the legitimate targets of branches when they patch

the program with absolute addresses. The second way to initialize the IBP table is to

perform the programprofiling as many model-based solutions have done [29, 31, 73]. By

running the application either in a particular time interval or until the unique IBPs

converges in a secure environment, the processor can regard all seen IBPs as legitimate

ones. Also, during the software development and testing phase, the test cases being

used should cover most, if not all, possible execution paths for each branch; therefore

an IBP table can be generated as a side product of the testing phase in the software

development. We also tested IBP convergence of an Apache server on Red Hat Linux

7.3 over Simics, an IA-32 emulator. We generated both static and dynamic loads from

a remote machine while collecting the addresses of the indirect branches and targets on

the simulated machine. Figure 3.1 shows that the number of IBPs does converge quickly.

However it may be difficult to collect all legitimate IBPs during in-house training
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Figure 3.1 The number of unique IBPs against indirect branches that have
been executed. Each data point is an additional workload.

Restricting Policy

Returns allows only if the destination is after a call instruction
Indirect Jumps allows only if the destination address is within read-only

code section or a function entry point
Indirect Calls allows only if the destination address is a function entry

point

Table 3.1 Sample Security Policies

without understanding internals of the application. Hence IBMON also employ the

generic security policies with information provided by hardware features during the in-

house training. The least restrictive policy is allowing any indirect branch instruction

during training. This policy is used during software testing phase of software develop-

ment or testing applications in the secure execution environment. In this phase, IBMON

is set to monitor all return instruction and mis-predicted indirect branches to collect

new IBPs. Note that a newly executed return instruction may not generate branch

mis-prediction due to the semantics of return address prediction [54].

Once most of legitimate IBPs are collected, the next restrictive policy can be em-

ployed. Table 3.1 lists the sample policy for different types of indirect branches, similar

to the one used in Program Shepherding [44], used in the prototype.
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A return instruction is used to return from functions. Since it refers destination

address stored in the run-time stack, it often becomes a target of CFAs. When a return

mis-prediction occurs, IBMON inspects the destination of the return instruction. In the

sample security policy, IBMON only allows control transfer if the previous instruction

of the destination is a call instruction in the read-only code section. It also prevent

function return in application code to the start of the shared library routine to reduce

the possibility of successful mimicry attacks.

The indirect jumps are used in the implementation of the jump table of switch state-

ments and the dynamically shared libraries. When an indirect jumps mis-prediction

occurs, IBMON inspects weather the destination is a function entry point in the case of

dynamically shared libraries or within the read-only code section in the case of switch

statements. Otherwise IBMON prohibits control transfers to the destination. For indi-

rect calls, IBMON only allows control transfers to a function entry points.

The sample security policy is somewhat weaker than policy provided by other security

tools for mimicry attacks. The security policy for restricting return instruction is weaker

than validating call-return program semantics provided by previous works [44, 24, 16, 57]

due to the lack of hardware supports. 2 Although this policy may miss highly sophisticate

mimicry attacks such as the return-into-libc from the shared libraries, it is good enough

to thwart the execution of injected code and the return-into-libc attack from application

code. However, the policy for indirect calls and indirect jumps provides the same level

of security strength with Program Shepherding.

In order to reduce the validation latency and the risk of the mimicry attacks, IBMON

can be set to only allow the pre-defined intended indirect control transfers. The most

restrictive security policy in IBMON is to allow control transfers with pre-collected

indirect branch pairs(IBPs) only.

2Currently,hardware can only efficiently provides information of a branch instance not branch history.
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3.2 System Architecture

IBMON operates in two modes: training, and monitoring. In the training mode, it

collects IBPs with the security policies. IBMON sets the hardware performance monitor

to monitor every mis-predicted indirect branch instruction and every return instruction,

since a return instruction may not generate return address mis-prediction. During the

monitoring mode, IBMON sets hardware performance monitor to generate interrupts

on indirect branch mis-prediction events. When an indirect control transfer violates the

security policy or it is not the intended control transfer, IBMON terminates the process.

Figure 3.2(a) describes the IBMON system structure. In order to perform the op-

erations, The system is composed of the front-end, called ibmon dev and the back-end

components, called ibmon. The linux kernel is modified to install an interrupt service

routine and call back functions to detect the context switch. We also add monitor bit

into ptrace flag in the process structure in the kernel. The monitor bit propagates when

child process is created. Hence IBMON can selectively monitor programs.

Figure 3.2(b) describes the information flow of the IBMON system. The back-end,

ibmon dev, is the kernel module. It sets appropriate MSRs to enable the performance

monitoring features and the debug feature. It also provides an interrupt service routine

that retrieves indirect branch information from the LBR stack and forwards the IBPs

to the front-end ibmon. To minimize the communication frequency between ibmon dev

and ibmon, ibmon dev maintains a software cache per the monitored application for the

recently collected IBPs. If the collected IBP is in the cache, ibmon dev skips forwarding

the information to ibmon.

The user interface,ibmon, is provided to wrap the target application. ibmon also

sets the operation mode and informs the target application to ibmon dev. Depends

on the operation mode, ibmon performs either the validation with the forwarded IBP

or stores them into user space. During the training mode, ibmon constructs the hash

table from the forwarded IBPs. During the monitoring mode, it validates IBPs with the

constructed hash table. When the validation is failed, it raises an alarm and then the

target application is suspended. An analyzer may be called to confirm the validation
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Figure 3.2 IBMON System Structure

result optionally.

3.3 Experiment Result

We first analyzed the effectiveness of control flow monitoring for control flow attack

and the limitations of using the performance monitoring feature for control flow mon-

itoring. Then we present the detailed results of the performance overhead incured by

IBMON. We have verified our system using several vulnerable programs, including the

proof of concept and the real world exploits.
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3.3.1 Effectiveness

The functional verifications of IBMON are done in the machine, running Linux-2.4.26

on Intel Pentium 4 630 processor with 2 GB memory, and Bochs x86 emulator [2]. We

conducted a set of benchmarks with various vulnerabilities such as the buffer overflows

and the format strings including the test programs in the Libsafe package [12]. We also

conducted functional the experiment with vulnerable applications running on RedHat

6.2 on Bochs emulator.

• Stack buffer overflows: Stack smashing attacks overflow a buffer in the run-timestack

to overwrite the return address. We conducted the experiments based on the classic

examples in [53, 12]

• Heap buffer overflows: Similar to stack smashing attack, attackers overflow a buffer

in heap area to overwrite a function pointer. We conducted the experiment on

modified sample attack code in [23]

• Format String Attacks: Attackers can modify the arbitrary memory locations with

the arbitrary values via the format string vulnerability. We conducted experiment

on sample attack code in [59].

• vudo: Attackers can corrupt the heap structure to modify the GOT entry to call

the malicious code when free() is called. We conducted the experiment based on

vudo [41]

• wu-ftpd: Attackers can execute an arbitrary code on the FTP server with the

privileges of the FTP daemon by exploiting an error in the file globbing that leads

the heap corruption [10].

• tracerout: Attackers can locally exploit traceroute vulnerability. The free() is called

twice with a pointer when multiple command line arguments are given with the

same flag [27].
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Exploit Name Control Data Type Payload Vulnerability Type Prevention?

Stack Smashing Return Address Injected Code Buffer Overflow Yes
Heap Buffer Overflow Function Pointer Injected Code Buffer Overflow Yes

Format String Function Pointer Injected Code Format String Yes
vudo GOT entry Injected Code Heap Corruption Yes

wu-ftpd GOT entry Injected Code Heap Corruption Yes
tracerout GOT entry Injected Code Heap Corruption Yes
su-dtors .dtors Section Injected Code Format String Yes

Table 3.2 Experiment Result

• glibc executing /bin/su: Attacker can exploit the format string vulnerability in

glibc’s locale functionality to overwrite .dtors section to execute an arbitrary

code [11].

Table 3.2 shows the result of the effectiveness test. IBMON successfully detected

all CFAs with the moderate security policy that allows control transfers even though

the IBPs are not in the pre-collected database. We also extended our experiments to

test the return-into-libc attack. Buffer overflow attacks with injected code execution are

detected since the injected code is in data area. However the moderate policy misses

the return-into-libc attack when the both the source and the destination addresses are

belong to the library routine. That is the same security level as the one provided by

Program Shepherding. However the attack is detected with the most restrictive security

policy that only allows the control transfers if they are found in the pre-defined legitimate

IBPs.

3.3.2 Performance Analysis

The performance data is collected by Intel VTune performance Analyzers [38] and

IBMON. Table 3.3 shows the summarized tested platforms. The IBMON systems are

implemented across three different commercial microprocessors: Pentium 4, Core 2 Duo

and Xeon 5520. In order to support the IBMON systems, two versions of the linux kernels

have been modified to support the context switching and the target applications tracking.
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Processor Cock Speed Architecture Memory OS gcc

Pentium 4 3 GHz NetBurst(32-bit) 2GB Linux 2.4.26 3.1.4
Core2 Duo 2.13 GHz Core(32-bit) 2GB Linux 2.6.27 4.1.2
Xeon 5520 2.27 GHz Nehalem(32-bit) 2GB Linux 2.6.27 4.1.2

Table 3.3 Tested Platforms

In order to evaluate the performance overhead of IBMON, we obtained performance

data from the multiple runs of several benchmarks. The SPEC2000 benchmarks [5] and

the number of different server applications, including FTP, web and database servers,

are compiled with gcc compilers. SPEC2000 benchmarks are compiled with the -O2

optimization flag.

Figure 3.3, figure 3.4 and figure 3.5, show the results of the branch instruction pro-

filing of SPEC2000 benchmarks. Since CFP2000 benchmarks, floating point programs,

exhibit a negligible number of executed indirect branches, the performance impact is

negligible for the floating point benchmarks. Hence we only focused on analyzing the

CINT2000, integer program, benchmarks. The x-axis represents the names of the bench-

marks and the y-axis is the ratio of the retired indirect branches for the Pentium 4 pro-

cessor and the executed indirect branches for Core 2 duo and Xeon processors. Pentium

4 can count the retired indirect branches but the Core 2 Duo and the Xeon only support

counting the executed indirect branches. Therefore the ratio of the indirect branches

of Pentium 4 is slightly less than the one in other processors. However the the Xeon

processor does the better indirect branch predictions so that its mis-prediction per in-

struction is similar or less than the one in Pentium 4 processor. The indirect branch

prediction of Core2 Duo processor is comparable to the one in Pentium 4 processor, but

the accuracy of the return address prediction is lower than the one in Pentium 4 and the

Xeon processor. Averagely, the ratio of indirect branch instruction, including the return

instructions, to the retired all instructions are 1.4% for the Pentium 4 processor, 1.55%

for the Core 2 Duo and 1.73% for the Xeon processor. The averages of indirect branch

mis-prediction ratio to the retired instructions are 3.4% for the Pentium 4 processor,
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Indirect Branch Ratio (Pentium 4)
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Figure 3.3 Indirect Branch Behavior of SPECINT2000 on Pentium 4 pro-
cessor

10.94% for the Core 2 Duo and 1.76% for the Xeon processor.

The frequency of the indirect branch mis-predictions has the direct relationship with

the performance overhead. Figure 3.6, figure 3.7 and figure 3.8 show the number of

mis-predicted indirect branch instructions per the retired instruction. The number of

indirect branch instructions over 1000 instructions of the integer programs range from

0.00 to 1.01 with an average of 0.44 for the Pentium 4 processor, from 0.12 to 2.89 with

an average of 1.3 for the Core 2 Duo processor, and from 0.00 to 1.3 with an average of

0.38 for the Xeon processor. Since validation is performed upon mis-prediction events,

the small values indicate that the performance overhead is likely to be acceptable.

Equation 3.1 gives the close estimation of the performance overhead as the percentage

of execution time increase. Where the average checking overhead is the time of a valida-

tion represented in the processor cycles. For example, a quick estimation could be given

as follows. The parser program, on average, exhibits only about 0.03 mis-prediction per

one thousand instructions on the Xeon processor. The average CPI for the parser is 1.00
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Indirect Branch Ratio (Core2 Duo)
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Figure 3.4 Indirect Branch Behavior of SPECINT2000 on Core2 Duo pro-
cessor

Indirect Branch Ratio (Xeon E5520)
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Figure 3.5 Indirect Branch Behavior of SPECINT2000 on Xeon processor
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Mis-Prediction per instruction (Pemtium 4)
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Figure 3.6 Indirect Branch Instructions per Instruction on Pentium 4 pro-
cessor

Mis-prediction per instruction (Core2 Duo)
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Figure 3.7 Indirect Branch Instructions per Instruction on Core2 Duo pro-
cessor
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Mis-perdiction per instruction (Xeon E5520)
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Figure 3.8 Indirect Branch Instructions per Instruction on Xeon processor

Performance overhead =
Average checking overhead×Mis-prediction per instructions

Cycle per instructions
(3.1)
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Processor rdmsr wrmsr Overall

Pentium 4 308 1523 1600/ 3600
Core2 Duo 299 303 1229
Xeon 5520 146 154 1074

Table 3.4 Instruction and Interrupt Handler Latency

and the checking overhead is 1021 cycles. Hence the estimated performance overhead

is 3.10%. The major performance overhead is incurred from the interrupt handler that

reads IBPs and resets the performance monitors. The performance monitoring features

consists machine specific registers(MSRs) which are on the virtual data path [37]. In

order to read and write from/to the MSRs, the machine specific instructions, rdmsr and

wrmsr, are used. Note that wrmsr instruction is the serializing instruction that flushes

pipeline when it is issued. Table 3.4 shows the average latency of machine specific

instructions and the average latency of the IBMON interrupt handler routine.

Each microarchitecture has a different implemenation for the performance monitor-

ing features and the monitored events. For example, as briefly mentioned before, the

Pentium 4 supports the sampling of the retired mis-predicted and/or indirect branch

events, however the Xeon and the Core 2 Duo only supports for the sampling of the

executed event whose instruction may not be retiring. Consequently IBMON in the

Xeon and the Core 2 Duo may count more mis-predicted indirect branch events. The

performance monitoring facility generates the performance monitoring interrupts(PMIs)

based on the performance monitoring counter(PMC) overflow event. When a specific

event is set to be monitored, the corresponding PMC is initialized. The PMCs can be

read and written via the machine specific instructions,rdmsr and wrmsr. Also, when a

PMI is generated, the interrupt handler must reset the control register to monitor the

target application continuously. For the Xeon and the Core 2 Duo, the PMC must be

set to PMC MAX - 1 to generates a PMI on every event. In contrast, the Pentium 4

supports the forced PMI that generates a PMI without setting the value of the corre-

sponding PMC. Furthermore, the number of PMCs used for monitoring mis-predicted
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indirect branch is different. In the Pentium 4 and the Core 2 Duo processors, indirect

branches are classified into two categories: indirect branch and return. However, in the

Xeon processor, indirect branches are further classified into non-call indirect branch, call

indirect branch and return. Therefore there is an extra step to determine which PMC

generate PMI to reset the corresponding PMC.

In Figure 3.9, figure 3.10 and figure 3.11, the first serie presents the performance over-

head of IBMON for SPEC2000 integer benchmarks when every indirect mis-prediction

is validated. Although validating the integrity of the IBPs upon every event of mis-

prediction reduces the validation frequency, the IBMON systems show the large perfor-

mance overhead on some of the benchmarks. Since the checking overhead is larger than

in-line reference checking [8] due to the high interrupt latency, they show slightly worse

performance overhead compare with CFI; on the Pentium 4 processor, the performance

overhead is ranged from 0% to 138% with an average of 21.26%. The result of perfor-

mance measurement on the Core 2 Duo is somewhat pessimistic. Although the latency

of the serializing instruction of Core 2 Duo, due to the inaccuracy of the indirect branch

prediction, the Core 2 Duo exhibits the worst performance overhead that ranges from

2.2% to 348% with an average of 161%. On the Xeon processor, the system shows the

better performance on most benchmarks. However a few of them exhibit the large per-

formance overhead: gcc(60.87%), crafty(167.07%), eon(117.59%) and perlbmk(92.35%).

The latency of serializing instruction and the performance of the indirect branch pre-

dictors are dramatically improved for most benchmarks as the average overall CPI is

also improved on the system. Therefore the performance overhead ranges from 0.08%

to 167.07% with a mean average of 40.36%.

Hence we further scrutinized the system and CFAs to reduce the performance over-

head of the IBMON systems. Since we were not able to reduce the overhead of the

interrupt handler of the IBMON, we closely examined the payload of the control flow

attacks. In order to make a successful attack with injected payload, the series of indi-

rect branches are used in the payload. Since these indirect branches are in the injected

code, all of them occur indirect branch mis-predictions. Similarly, in order to achieve
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IBMON Performance Overhead(Pentium 4)
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Figure 3.9 IBMON Performance Overhead on the Pentium 4 processor

IBMON Performance Overhead (Core2 Duo)
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Figure 3.10 IBMON Performance Overhead on the Core 2 Duo processor
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IBMON Performance Overhead(Xeon E5520)
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Figure 3.11 IBMON Performance Overhead on the Xeon processor

successful return-into-libc attack, attackers also need to craft multiple run-time stack

frames [52]. Whenever the control transfers are made with the crafted control data

in the run-time stack, they also generate events of mis-prediction on return addresses.

Furthermore, when the injected code executes code segments that are not the part of

the vulnerable program, the IBPs of the code segments, highly likely, are not in the IBP

database of the vulnerable program. Most injected code attacks invoke execv() with

/bin/sh parameters. In order to find the location of the parameter dynamically, first,

the vulnerable program returns to the attack code. Secondly, the attack code makes rel-

ative jump, indirect jump, to the call instruction that is placed immediately before the

parameter. Thirdly, the attack code makes the relative call, also indirect call, to the first

instruction of the preparation code for calling execv(). Hence the attack code requires

at least three indirect branch mis-prediction events to invoke the execv() system call.

Therefore it is safe to validate IBPs on every three indirect branch mis-prediction events

without compromising security level for the injected code attack. Furthermore, after

the execv() system call, the shell code has different IBPs from the vulnerable program,
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any event of mis-predict indirect branch will raise alarm. Similarly, it is also safe to

validate every three or five mis-predicted IBPs without compromising security strength

for the advanced return-into-libc attacks. With the different validation intervals, we also

conducted effectiveness experiment. With the validation on every indirect branch mis-

prediction event, IBMON detects the CFA at the time of control flow hijacking. With

the validation on every three indirect branch mis-prediction events, the attack has been

detected during ithe preparation routine for the main attack body. With the validation

on every five indirect branch mis-prediction events, the attack has been detected in the

early stage of the main attack in the worst case. Hence with the most restrictive security

policy of IBMON, IBMON can successfully detects all the attacks in table 3.2.

The second and the third column in figure 3.9, figure 3.10 and figure 3.11 present the

performance overhead of IBMON for validation IBPs on every three and five indirect

branch mis-prediction events accordingly. On the Pentium 4 processor, this validation

requires additional reset routines for the PMCs. Since the average validation latency

becomes 1600 cycles to 3600 cycles, the performance of the larger validation interval is

not dramatically improved. The performance overhead for validating every three events

rages from 0% to 102% with an average of 12.57%. On the Xeon and the Core 2 Duo

processors, configuring the larger validation interval does not require additional routine,

the performance improvement is roughly proportional to the number of validations. On

the Core 2 Duo processor, the performance overhead ranges from 0.7% to 232% with

an average of 62.79%. On the Xeon processor, when the IBOM system, on the Xeon

processor, validates the IBPs integrity on every three indirect mis-prediction, the perfor-

mance overhead of IBMON is comparable to the one presented in CFI. The performance

overhead ranges from 0% to 56% with an average of 13.81%. For the largest validation

intervals, validating every five events, the results of performance overhead measurement

are optimistic for the Pentium 4 and the Xeon processor. On the Pentium 4 processors,

the performance overhead ranges from 0% to 61% with an average of 7.5%. Similarly, on

the Core 2 Duo processor, the performance overhead ranges from 0.4% to 139% with an

average of 37.67%. The IBMON system, on the Xeon processor, out performs CFIs when
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it validates IBPs on every five indirect branch mis-prediction events. The performance

overhead ranges from 0% to 33.51% with an average of 8.31%.

We also conducted server program benchmarks. In this performance test, we mea-

sured performance overhead on the Core 2 Duo processor with 1Gbps Ethernet con-

nection. IBMON is configured to validate IBPs on every mis-predicted indirect branch

event. For web server benchmarks, we used httpd-2.2.11-2, nginx-0.7.59, and lighthttpd-

1.4.22 as web servers. We perform the benchmarking with various size of static web pages

as well as the various number of the concurrent web page requests to the servers. The

benchmarking tool ab is used for generating and measuring web server performance. Fig-

ure 3.12, figure 3.13 and figure 3.14 show the static web benchmarks for three different

servers. We measured the throughput, web page request per second, of the web servers.

The average performance overhead is negligible for nginx (1%)and lighthttpd(0.23%)

server. X-axies shows the number of concurrent web page request and Y-axis show the

performance degradation ratio in terms of request per second. Each series shows the

different size of web page in kilo-byte. Note that the average size of web pages on the

Internet is approximately 12KB.

Similarly, we also conducted other server programs which are FTP servers vsftpd-

2.0.7, wu-ftpd-2.6.2 and database server PostgreSQL-8.3. We used dkftpd-0.45 to mea-

sure the performance overhead for FTP servers. Various size of files, ranging from 1KB

to 100MB, are requested to FTP server and the throughputs are measured. The result

shows that the overall performance degradation is negligible. Hence we do not report the

details. The performance of PostgreSQL-8.3 under IBMON is measured with TPC-C

specification. The TPC-C specification is the on-line transaction model for a database

server to measure the several metrics. The performance degradation for the database

server is around 3%.
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Figure 3.12 nginx Web server Performance under IBMON Monitoring
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Figure 3.13 Apach2 Web server Performance under IBMON Monitoring
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Figure 3.14 light-httpd Web server Performance under IBMON Monitoring
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4 IBF-Cache: Hardware Support for Efficient Control Flow

Validation

Although the processor achieves low branch mis-prediction rate, the IBMON system-

still incurs the non-negligible performance overhead. Therefore, this thesis also proposes

an efficient hardware mechanism to reduce the validation frequency. The Indirect Branch

Filter(IBF)-cache mainly takes advantages of the temporal locality of the behavior of

indirect branches in programs. The IBMON system maintains the software cache to

reduce the communication between the kernel module and the user mode application.

Since the number of IBPs are relatively small and indirect branches exhibit the high

temporal locality, the IBMON system reduces the large number of the user level valida-

tions. Therefore, when the cache is implemented in the hardware, the frequency of the

most expensive component, interrupt handling, is reduced. Hence, implementing the

IBF-cache is the straight-forward approach to reducing the number of interrupts that

result in reducing the large portion of the performance overhea. The subsequent sections

present more details of the IBF-cache.

4.1 Indirect Branch Filter(IBF)-Cache

The IBF-cache records the indirect branch address pairs that have been validated

recently. It is a small component and is as fast as L1 caches. For a mis-predicted indirect

branch, the validation starts at the execute/write-back stage where the branch and target

addresses are known. This address pair is sent to the IBF-cache. If the pair resides in the

cache, the pair has been previously validated. This validation can be done within branch

mis-prediction penalty cycle, hence, there will be no overhead for accessing IBF-cache.
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Filter cache

Validation logic (BF or BDD)

Off-chip storage
(BF or BDD)

Branch Address
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Branch address
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mis-predictions)

Vadilation result
& exception

Reg-read

Figure 4.1 The overview of the IBF cache design with data path connections to
a 6-stage out-of-order pipeline.

Upon IBF-cache miss, the hardware generates an interrupt through the performance

monitoring features for the IBMON system. The system validates the control flow

with the information stored in the off-chip main memory, expensive validation. If the

outcome is negative (no alarm), the monitoring tool returns from the interrupt routine.

Otherwise, the IBMON system raises an exception and let an analyzer further examines

the program.

Figure 4.1 shows the overall structure of the hardware design with the data path

connections to an out-of-order pipeline using issue queue with conventional BTB (branch

target buffer) designs. We presents a 6-stage pipeline for simplicity, while our simulation

uses a 9-stage pipeline.

The validation is done only for an indirect branch that causes a branch mis-prediction.

For a correctly predicted indirect branch, the BTB (branch target buffer) must have

predicted the target address correctly, which also means the BTB has seen the branch

address pair before. The first time the branch address pair is brought into the BTB, it
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must have caused a branch mis-prediction and have been validated.

The IBF cache uses an XOR-based indexing scheme, which are from both the branch

address and the target address, to avoid misses from indirect branches which have mul-

tiple targets during the program execution. If an indirect branch uses multiple targets,

the XORing of the target address will distribute all branch address pairs of this branch

over the cache address space. Otherwise, those branch address pairs will be mapped

onto the same cache entry, causing severe conflicts. XOR-based indexing scheme has

been used in both cache indexing and branch target address prediction (XORing branch

address with branch history). Nevertheless, the branch target address prediction cannot

use the XORing with branch target address because it is unknown at the time of branch

prediction. This is the reason the IBF cache can not be replaced by an enlarged BTB.

4.1.1 Nonblocking IBF Cache Design

There are several reasonable designs for the control and data path between the

pipeline logic and the IBF cache. A simple design is blocking IBF cache: The pipeline

stalls when an indirect branch miss in the IBF cache. Since the IBF cache is small and

fast, a hit will cause little delay. An IBF cache miss, nevertheless, may cause the pipeline

to stall for hundreds of cycles. We found in our experiments that even the blocking IBF

cache works well for many programs because the IBF cache has very low miss rate.

However, some programs with very large instruction footprint and fair temporal lo-

cality in the control flow may favor a non-blocking IBF cache design. For those programs,

the amount of active control path may exceed the size of the IBF cache. A non-blocking

design may reduce the pipeline stalls for two reasons. First, there can be a overlap

between the pipeline execution and the BF validation logic. On a branch target mis-

prediction, it will take dozens of cycles for the pipeline to recover for the mis-prediction.

The pipeline may not stall until the ROB, the issue queue, or any other resources are

full. More importantly, a nonblocking design allows concurrency in the BF validation

logic, which reduces the average penalty of IBF cache misses. This is particularly true

for today’s high-bandwidth DRAM memory systems. For example, the BF validation
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logic may need to access the DRAM four times for a validation request. While the first

access may take 70ns to finish, the four accesses may be fully pipelined on a FB-DIMM

memory system [39], and each other access only takes 5ns extra. In other words, a first

validation may finish within 85ns, and the following ones only take 20ns each, if the

validation logic can see all pending requests. After all, a non-blocking design is also very

simple.

Figure 4.2 illustrates the design for non-blocking IBF cache. The commit logic is

revised to include a V-bit (Validation Bit) vector. The function of V-bit is to tell

if an indirect branch it is validated successfully or not when the instruction is to be

committed. The V-bit vector has as many entries as the ROB, but is made separate to

avoid conflicts in ROB accesses. When an instruction is decoded, it is allocated with a

V-bit in additional to a ROB entry and any other resources the instruction may require.

The V-bit is set to 1 by default. If the instruction is an indirect branch and causes a

branch target mis-prediction, the pipeline is flushed and at this time its V-bit is reset

to 0. The completion bit, which is already in the ROB entry, is reset and will be set

when the validation is done. Three information fields are then sent to the IBF cache

controller: the ROB index, the branch address, and the target address. The latter two

are used to access the IBF cache. If hit, then the validation request is done; otherwise,

the IBF cache sends a request to BF validation logic. In either case, if the validation

is negative, the IBF cache will assert the “Validated” signal and send back the ROB

index; the corresponding V-bit is set and so is the completion bit of the instruction. The

commit logic will raise a special exception when it finds at the ROB head an indirect

branch that is ready to be committed and its V-bit is zero. The operating system will

handle this special exception and examine the program states in detail.

4.2 Experimental Methodology

We have verified and evaluated our design by cycle-accurate simulation and trace

simulation. The majority of the performance evaluation is on the IBF cache design.

The overall performance overhead is virtually nonexistent because of the use of IBF
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Figure 4.2 The design of a non-blocking IBF cache the an out-of-order pipeline.

cache.

4.2.1 Cycle-Accurate Simulation

We have extended the SimpleScalar simulation suit [14] to simulate the IBF cache

and the BF validation logic. The pipeline simulation is revised to access the IBF cache

upon branch mis-predictions on indirect branches as discussed in Section 4.1. The index

of IBF-cache is selected from a simple XOR-based hash value of the branch and target

addresses. Note that the IBF cache only have tags, which are the concatenation of the

branch address and the target address. In the simulation, we use the SPEC CPU2000int

benchmarks and run them to the completion by using the MinneSPEC input sets. We

do not use the SPEC CPU2000fp benchmarks because they have negligible fractions of

indirect branches. Table 4.1 shows the most important simulation parameters.

4.2.2 Trace-based IBF Cache Simulation

Because of the limit of the run-time execution environment of SimpleScalar, we

cannot run many real-world workloads in the simulation. We use trace-based simulation

to evaluate the IBF cache with a wider range of workloads than SPEC CPU2000int.

The trace-based simulation does not report the overall performance overhead, but we
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Parameters Values
Processor speed 3.2 GHz
Pipeline 8-issue, 9-stage
Functional units 8 IntALU, 2 IntMult, 8 FPALU, 2 FPMult
Issue queue size 32
Reorder buffer size 128
Load/store queue size 32 LQ, 32 SQ
Branch predictor gshare predictor of 8192 counters, 8-entry RAS
Misprediction penalty 7 cycles
L1 caches 64KB Inst/64KB Data, 4-way, 2-cycle hit latency
L2 cache Unified 2MB, 8-way, 12-cycle hit latency
Memory 500-cycle latency

Table 4.1 Simulator parameters.

can estimate the overhead from the IBF cache miss rate and the latency of the BF

validation logic. We utilize the performance monitoring features in Intel Pentium 4

to monitor the events of indirect branch mis-predictions and to generate the trace of

address pairs, and then use them as input to a trace-based simulation. We compile the

programs with gcc 3.3.2 and run them on Redhat Linux with kernel 2.4.26. We have

used the following workloads:

We collected the trace of indirect branch mis-prediction on Intel Pentium 4 processor

using IBMON. The trace is then fed into a trace-based simulation of the IBF-cache.

We also use the validation latency of Pentium4 processor to evaluate the performance

overhead. We have used various workloads in our performance evaluation: TPC-C

workload with Postgres 7.4.13 database system, WebStone 2.5 benchmark with Apache

2.0.47, and dkftpd benchmark, FTP benchmark, with vsftpd demon. We also evaluate

SPECINT 2000 and SPEC 2006 integer benchmarks. All programs are compiled with

gcc 3.3.2 and run on Redhat Linux with kernel 2.4.26.

• SPEC CPU2000int and SPEC CPU2006int benchmarks: We use the reference

input sets and run all programs to completion. The CPU2006int programs have

generally more complex source code than the CPU2000int programs.
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• TPC-C workload: TPC-C is an OLTP (on-line transaction processing) workload

that emulates warehouse transactions using a database system. We use Postgres

7.4.13 as the supporting database system.

• WebStone 2.5 benchmark: The WebStone benchmark creates a load on a Web

Server by simulating the activities of multiple clients. We configure WebStone

to use two different types of access methods, HTML and CGI, with 10 to 100

simultaneous clients. The underlying web server is Apache 2.0.47.

• FTP Workload: We use an FTP demon called vsftpd, version 1.2.0-5, and an FTP

benchmark called dkftpbench.

4.3 Experiment Results

4.3.1 Cycle-Accurate Simulation Results

This experiment uses the SPEC2000int benchmarks with the MinneSPEC input sets.

Since the IBF cache utilizes the temporal locality in the program control flow, it is

important that good locality does exist in the workloads. We found that the indirect

branch makes up about 1.5% of all instructions. The mis-prediction ratio for the SPEC

integer benchmarks is no more than 10% and on average 3.1%. Table 4.3 shows the

indirect branch profiling for SPECINT2000 benchmarks. We do not include the floating

point benchmarks because those floating-point programs are much less branch-intensive

and therefore the performance overhead for them is not a concern. The table shows

that a small subset of static indirect branches make up a large portion of dynamic

indirect branches. The second and third columns of the table are the total number

of static indirect branches and the total number of unique targets, respectively. The

fourth column is the number of static indirect branch instructions that are responsible

for 90% dynamic indirect branch instructions. The fifth column is the number of unique

indirect branch address pairs that are observed in the execution of 90% indirect branch

instructions. The sixth to ninth columns are similar except that ratios 95% and 99%
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Total num. Indir. Total num. pairs 90% active Indir. 90% active pairs 95% active indir. 95% active pairs 99% active Indir. 99% active pairs 

gzip 157 274 4 28 5 30 8 42

gcc 1921 10099 300 4435 412 5435 733 7234

mcf 178 289 4 9 4 9 16 37

crafty 310 1410 25 527 30 540 42 616

parser 455 1327 37 326 52 371 95 590

eon 875 2426 53 331 69 348 85 365

perlbmk 427 1164 22 56 25 59 27 61

gap 1014 4233 134 2006 199 2386 379 3026

vortex 739 3697 46 883 87 1176 162 1695

bzip2 146 293 6 50 7 83 9 86

twolf 325 1264 37 213 52 409 72 671

Figure 4.3 Indirect branch profiling for SPEC CPU2000int.

are used. The profiling results show that it is very promising to use a small cache to

capture the locality existing in the indirect branch address pairs observed in the program

execution; and the frequency of validation may be significantly reduced by the IBF cache.

As discussed before, a key point of the IBF cache design is that the index bits are

selected from the XOR of the branch address and target address. A BTB only uses

the branch address to form the index, and therefore multiple targets of a single indirect

branch will be mapped to the same entry in a direct mapped BTB. The XOR-based

indexing eliminates this source of conflicts. A point worth noting is that, even if a set

associative BTB is used, the number of targets is usually higher than the number of

ways; and only one entry for each branch.

The overall performance overhead is negligible for all programs, therefore we do not

report the performance detail. For example, the largest overhead we observed on the

configuration with 2-way set associative IBF- cache of 2k entries is 0.38% (for eon), and

the average is 0.02%. For the same reason, we do not show the results of non-blocking

IBF cache design.

4.3.2 Trace-based Simulation Results

The trace-based simulation allows us to evaluate the IBF cache design with a wide

range of applications. Although we cannot to measure the overall execution time, we

can obtain the IBF cache miss rates through trace-based simulation and may estimate

the overall performance overhead.
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Program 256 512 1K 2K 4K 8K
gzip 0.002% 0.002% 0.002% 0.002% 0.002% 0.002%
vpr 0.003% 0.002% 0.002% 0.002% 0.002% 0.002%
gcc 1.325% 0.592% 0.415% 0.297% 0.202% 0.161%
mcf 0.591% 0.591% 0.591% 0.591% 0.591% 0.591%
crafy 2.217% 0.598% 0.172% 0.110% 0.106% 0.102%
parser 2.467% 0.956% 0.271% 0.085% 0.030% 0.028%
eon 0.004% 0.001% 0.001% 0.001% 0.001% 0.001%
perlbmk 12.245% 3.787% 0.718% 0.046% 0.024% 0.001%
gap 0.399% 0.162% 0.042% 0.016% 0.003% 0.001%
vortex 0.045% 0.028% 0.015% 0.012% 0.012% 0.012%
bzip2 0.003% 0.003% 0.003% 0.003% 0.003% 0.003%
twolf 0.016% 0.002% 0.002% 0.002% 0.002% 0.002%
Average 1.610% 0.560% 0.186% 0.097% 0.081% 0.075%

Table 4.2 The IBF cache miss rates for SPEC CPU2000int benchmarks with
the reference inputs for cache sizes of 256 to 8K entries. The cache
set associativity is fixed at four. The numbers in bold type are the
maximum number for a given cache size.

IBF cache Miss Rate. Table 4.2 shows the IBF cache miss rates for all SPEC

CPU2000int programs with the reference inputs. For programs with multiple reference

inputs, we use the average of all inputs. The IBF cache set associativity is fixed at four

and we change the size from 256 to 8K entries. As the figure shows, the IBF cache

miss rate becomes very small when the cache size increases beyond 1K; the maximum

is 0.718% on perlbmk for the cache size of 1K. The miss rate of most programs with 8K

entries is close to zero.

Table 4.3 shows the IBF cache miss rates for all SPEC CPU2006int programs with

the reference input sets. The CPU2006int programs have generally more complex source

code than CPU2000int programs. Additionally, there are three more C++ programs,

omnetpp, astar, and xalancbmk, which may have high frequency of indirect branch

instructions. Again for programs with multiple reference inputs, we use the average of

all inputs, and the IBF cache set associativity is fixed at four and we change the size

from 256 to 8K entries. As in results for the CPU2000int programs, the IBF cache

miss rate becomes very small when the cache size increases beyond 1K; the maximum

is 0.898% on perlbmk for the cache size of 1K. The miss rate of most programs with

8K entries is close to zero. The three new C++ programs are not very different from
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Program 256 512 1K 2K 4K 8K
perlbmk 1.124% 0.220% 0.071% 0.012% 0.005% 0.004%
bzip2 0.054% 0.010% 0.009% 0.009% 0.009% 0.009%
gcc 0.800% 0.297% 0.148% 0.089% 0.055% 0.030%
mcf 0.021% 0.020% 0.020% 0.020% 0.020% 0.020%
gobmk 5.271% 2.193% 0.898% 0.351% 0.117% 0.055%
hmmer 0.038% 0.028% 0.023% 0.022% 0.022% 0.022%
sjeng 0.540% 0.052% 0.006% 0.004% 0.003% 0.003%
libquantum 1.876% 0.706% 0.695% 0.695% 0.695% 0.695%
omnetpp 0.285% 0.052% 0.007% 0.004% 0.003% 0.003%
astar 0.617% 0.581% 0.568% 0.563% 0.562% 0.562%
xalancbmk 1.986% 0.988% 0.320% 0.053% 0.007% 0.004%
Average 1.147% 0.468% 0.251% 0.166% 0.136% 0.128%

Table 4.3 The IBF cache miss rates for SPEC CPU2006int benchmarks with
the reference inputs for cache sizes of 256 to 8K entries. The cache
set associativity is fixed at four. The numbers in bold type are the
maximum number for a given cache size.

the other programs. When compared with CPU2000int, the average miss rate increases

slightly for all sizes except 256-entry, for which the average miss rate drops slightly.

Number of Misses Per 10,000 Instructions. Table 4.4 shows the number of

IBF cache misses per 10,000 instructions for SPEC2000Int. This number is closely

related to the overall performance overhead. It is determined by three factors of a pro-

gram: the ratio of indirect branch instructions, the branch mis-prediction rate and the

IBF cache miss rate. Program gcc has the largest number for all cache sizes mainly

because it has relatively high frequency of indirect branch instructions. With 2K IBF

cache entries, there is only 0.091 miss per 10,000 instructions or less than one instruction

per 100,000 instructions. We can give a ballpark estimate of the overall performance

overhead as follows: Assume that the off-chip validation takes 469ns or 1500 cycles

on a 3.2 GHz processor, and assume that the program CPI is 1.81 [19]. The perfor-

mance overhead is about 1500 ∗ 0.091/(10, 000 ∗ 1.81) = 0.65%. Similarly, we obtain an

average performance overhead of 0.0059% for CPU2000int programs (Miss rate is one

miss per million instructions and CPI is 2.545 on average). In fact, this estimate is pes-

simistic because Intel processors has relatively high latency in accessing the performance
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Program 256 512 1K 2K 4K 8K
gzip 0.000 0.000 0.000 0.000 0.000 0.000
vpr 0.000 0.000 0.000 0.000 0.000 0.000
gcc 0.366 0.183 0.131 0.091 0.060 0.046
mcf 0.000 0.000 0.000 0.000 0.000 0.000
crafty 0.301 0.081 0.023 0.015 0.014 0.014
parser 0.040 0.015 0.004 0.001 0.000 0.000
eon 0.001 0.000 0.000 0.000 0.000 0.000
perlbmk 0.049 0.014 0.003 0.003 0.003 0.003
gap 0.199 0.081 0.021 0.008 0.001 0.000
vortex 0.000 0.000 0.000 0.000 0.000 0.000
bzip2 0.000 0.000 0.000 0.000 0.000 0.000
twolf 0.000 0.000 0.000 0.000 0.000 0.000
Average 0.080 0.031 0.015 0.010 0.007 0.005

Table 4.4 The number of IBF cache misses per 10,000 instructions for SPEC
CPU2000int benchmarks with the reference inputs for cache sizes of
256 to 8K entries. The cache set associativity is fixed at four. The
numbers in bold type are the maximum number for a given cache size.

monitoring counters. Even so, the performance is very good when compared with the

previous work [8, 13], which has up to 50% overhead and on average 21% overhead. We

found that a two-way set associative IBF cache improves significantly over the direct

mapped one with the same size; and that the improvement diminishes when the degree

of associativity increases beyond four.

Table 4.5 shows the number of IBF cache misses per 10,000 instructions for SPEC2006Int.

Again program gcc has the largest number for all cache sizes mainly. With 2K IBF

cache entries, there is only 0.147 miss per 10,000 instructions or about one and a half

instructions per 100,000 instructions, a slight increase from the gcc program in SPEC

CPU2000int. A ballpark estimate like the previous one gives an overall performance

overhead of 0.08%. Again it shows that the overall performance overhead is negligible

for all SPEC CPU2006Int programs. Overall the average number of misses per 10,000

instructions increases only slightly from SPEC CPU2000int for all configurations except

256-entry, for which the number drops.
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Program 256 512 1K 2K 4K 8K
perlbmk 0.690 0.135 0.044 0.008 0.003 0.002
bzip2 0.000 0.000 0.000 0.000 0.000 0.000
gcc 2.201 0.781 0.313 0.147 0.088 0.058
mcf 0.000 0.000 0.000 0.000 0.000 0.000
gobmk 0.042 0.017 0.007 0.003 0.001 0.000
hmmer 0.000 0.000 0.000 0.000 0.000 0.000
sjeng 0.185 0.018 0.002 0.001 0.001 0.001
libquantum 0.000 0.000 0.000 0.000 0.000 0.000
omnetpp 0.032 0.006 0.001 0.000 0.000 0.000
astar 0.000 0.000 0.000 0.000 0.000 0.000
xalancbmk 0.108 0.054 0.017 0.003 0.000 0.000
Average 0.296 0.092 0.035 0.015 0.009 0.006

Table 4.5 The number of IBF cache misses per 10,000 instructions for SPEC
CPU2006int benchmarks with the reference inputs for cache sizes of
256 to 8K entries. The cache set associativity is fixed at four. The
numbers in bold type are the maximum number for a given cache size.

Sensitivity to IBF cache Associativity. Table 4.6 shows sensitivity of the IBF

cache miss rates to the set associativity of the IBF cache for SPEC CPU2000int pro-

grams, and Table 4.7 for SPEC CPU2006int programs. We found that the direct mapped

IBF cache has high conflict miss rate when compared with the 2-way or 4-way IBF cache

of the same size. As the set associativity increases, the miss rates drop significantly. The

sharp drop of miss rates is surprising; and we have double checked our simulation code

and used two independent implementations of simulation to verify the result. This sce-

nario is possibly related to some special property of the conflict patterns of the branch

address pairs, which may be very different from conventional instruction or data caches.

4.3.3 Trace-based Simulation Results for Other Workloads

The other workloads include TPC-C, WebStone and an FTP server benchmark.

Table 4.8 shows the IBF cache miss rate with varying cache size from 256 to 8K with

the set associativity fixed at four. TPC-C has relatively high miss rates with IBF cache

of 256 and 512 entries, but the miss rate becomes very small after the size increases

beyond 2K. The TPC-C workload is known to have large instruction footprint, and
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Program 1-way 2-way 4-way
gzip 0.067% 0.002% 0.002%
vpr 0.007% 0.003% 0.002%
gcc 2.841% 0.843% 0.297%
mcf 0.591% 0.591% 0.591%
crafy 2.813% 0.307% 0.110%
parser 2.283% 0.351% 0.085%
eon 2.701% 0.001% 0.001%
perlbmk 4.733% 0.566% 0.046%
gap 0.530% 0.054% 0.016%
vortex 0.044% 0.014% 0.012%
bzip2 0.004% 0.004% 0.003%
twolf 0.433% 0.025% 0.002%
Average 1.421% 0.230% 0.097%

Table 4.6 IBF cache cache miss rates for SPEC CPU2000int benchmarks with
the reference inputs with varying set associativity. The cache set as-
sociativity increases from 1-way (direct mapped) to 4-way with cache
size being fixed at 2K entries.

therefore the result indicates that the control flow in TPC-C has good locality. The

WebStone benchmark has very high miss rates with IBF cache of 1K entries or less, and

drops to less than 1% when the size increases beyond 2K. The FTP server benchmark

incurs few IBF cache misses for all sizes. Table 4.9 shows the number of misses per

10,000 instructions, which is more related to the overall performance overhead. The

number is negligible for all the workloads for cache size of 4K or more entries.

Table 4.10 shows the sensitivity of the IBF cache miss rates over the set associativity.

The cache size is fixed at 2K entries. Similar to the SPEC benchmarks, set associative

caches reduce the cache conflicts significantly.
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Program 1-way 2-way 4-way
perlbmk 1.829% 0.096% 0.012%
bzip2 2.675% 1.079% 0.009%
gcc 1.142% 0.186% 0.089%
mcf 0.492% 0.020% 0.020%
gobmk 2.172% 0.680% 0.351%
hmmer 0.103% 0.025% 0.022%
sjeng 4.902% 0.034% 0.004%
libquantum 1.028% 0.701% 0.695%
omnetpp 0.328% 0.006% 0.004%
astar 1.132% 0.569% 0.563%
xalancbmk 1.250% 0.240% 0.053%
Average 1.550% 0.331% 0.166%

Table 4.7 IBF cache cache miss rates for SPEC CPU2006int benchmarks with
the reference inputs with varying set associativity. The cache set as-
sociativity increases from 1-way (direct mapped) to 4-way with cache
size being fixed at 2K entries.

Workload 256 512 1K 2K 4K 8K
TPC-C 10.662% 3.226% 0.431% 0.081% 0.001% 0.000%
WebStone 58.523% 43.737% 24.496% 3.389% 0.463% 0.180%
WebStone CGI 59.484% 46.892% 29.596% 6.369% 0.643% 0.194%
FTP server 0.241% 0.146% 0.125% 0.117% 0.116% 0.116%

Table 4.8 The IBF cache miss rates for TPC-C, WebStone and FTP server
benchmarks with cache size of 256 to 8K entries. The cache set asso-
ciativity is fixed at four.

Workload 256 512 1K 2K 4K 8K
TPC-C 1.754 0.531 0.071 0.013 0.000 0.000
WebStone 13.061 9.761 5.467 0.756 0.103 0.040
WebStone CGI 13.361 10.533 6.648 1.431 0.144 0.044
FTP server 0.019 0.012 0.010 0.009 0.009 0.009

Table 4.9 The number of IBF cache misses per 10,000 instructions TPC-C, Web-
Stone and FTP server with cache sizes of 256 to 8K entries. The cache
set associativity is fixed at four.
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Workload 1-way 2-way 4-way
TPC-C 3.353% 0.919% 0.001%
Webstone 18.149% 11.357% 3.389%
Webstone CGI 21.140% 14.153% 6.369%
FTP server 0.209% 0.151% 0.116%

Table 4.10 IBF cache cache miss rates for TPC-C, WebStone and FTP server
benchmarks with with varying set associativities. The cache set as-
sociativity increases from 1-way (direct mapped) to 4-way with cache
size being fixed at 2K entries.
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5 Run-Time Detection of Malwares via Dynamic Control

Flow Inspection

Anti-virus software is designed to detect the malicious program by statically analyz-

ing the binary of programs. The scanning is usually done in a manner that matches the

specific binary signature from the program binary with the malicious program database

by string matching or applying heuristics on the program binary. However, attackers

have started using the obfusfication techniques to change the static binary forms to evade

the security program by hiding the binary signatures. It has been done by in three ways:

encrypting the binary, applying polymorphism, and utilizing metamorphic engines.

The encryption method encrypts the body of the malicious program so that the static

binary is made different from the plain binary of malicious program. When the program

starts, first it decrypts the encrypted body and executes the malicious program. In or-

der to efficiently encrypt and decrypt the program during run-time, a malicious program

uses the simple symmetric encryption scheme such as XORing the binary with a key.

Hence ainti-virus software tries to identify the decryption routine and uses the decryp-

tion routine as the signature of malicious program. Therefore malicious programs, that

simply changes the key of encryption and decryption procdure, can be easily identified.

Another method to hide the static binary signature is using the metamorphic en-

gines. The metamorphism rewrites the malicious program in a manner that performs

same functions with the origianl malware. From the straight forward implementation as

the skelton of the program, metamorphic engines rewrite the program by substituting in-

structions or subroutines to equivalent instructions or subroutines. It is very difficult to

check the equivalance of two different code segments. Threfore most anti-virus programs

generate new version of signature from newly generated malicious program. Fortunately,
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generating automative metamorphic engine is hard and it consumes a lot of efforts to

generate correct metamorphic engine. Since the nature of anti-virus software’s detection

mechanism, anslysis of binray stream, anti-virus software simply treats the methamor-

phic malious program as a new malicious program. Therefore anti-virus software has

little difficulty on detecting metamorphic malware. However, when the number of mal-

cious programs increases abruptly, most of anti-virus software encounters issues on the

performance overhead. Hence the attackers’ motivation of using the evading methods is

shifted from hiding its binary signatures to quickly generating new malicious programs

from existing ones with little effort.

For abovementioned reasons, attackers increasingly use polymorphic method to change

the decyption routine. The polymorphic method is to change the run-time decryption

routine to hide the signature of the decryption routine. By using a number of different

decryption routines, which perform equivalent decryption, attackers can populate new

version of malicious program. From the anti-virus program’s perspective, it is com-

pletely new malicious program and needs to generate a new signature of the decryption

routine. Consequently, attackers can generate new malicious program quickly to cause a

scalability issue on anti-virus programs. However, since the the polymorphic decryption

routine is usually simple, anti-virus programs is able to emulate the decryption routine

to identify the body of the plain malicious program. Therefore, a malicious program

wirter uses more sophisticate polymorphic method, called run-time packing. Run-time

packing compresses programs to reduce the static binary size. When the run-time packed

program starts, it starts decompressing the program and execute the program. There

are numerous run-time packers that use different types compression algorithms and im-

plementaion of the algorithms. By combining compression methods and the encryption

methods, attackers can quickly populate new types of run-time packers. This run-time

packing method is more sophisticate than the simple encryption, it causes a number of

issues on anti-virus software. Since attckers have large pool of polymorphic tools, they

can easily populate the new malware from the old malware even though it has been

kown. Also, the emulation techniques to identify the plain malware may no longer be
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effective due to the performance overhead of the emulation of malware.

Hence the thesis also propose a hardware-assisted, run-time malware detection sys-

tem to detect malwares that use packing and encryption. It has a control-flow based

mechanism called RCFI (Recent Control Flow Inspection) that performs fast and specu-

lative malware detection. RCFI is a system component. We designed a special hardware

component, called Enhanced Last Branch Recording (ELBR) stack, which records the

address (PC value) of most recently executed branches. Essentially, the ELBR records

the most recent control flow of program execution. Upon a certain system call, RCFI

searches the content of ELBR for any signature of malware. A special database of

malware signatures is pre-built using the control flow information of known malwares

after unpacking and is part of RCFI. RCFI can be composed with the existing malware

detection methods. In our system, RCFI can be used with behavior-based malware

detection [51, 18], and they may further trigger expensive scanning [51, 18].

The novelty of this study is the use of RCFI and ELBR, as well as the use of mal-

ware signature built from the control flow information of the plain malwares. RCFI is a

fast and reliable method of malware detection. The experimental results show that the

system can successfully distinguish 30 malware variants and benign programs that we

randomly put together. With RCFI, it is possible to search for the malware signature

very frequently. New processors, including Intel and AMD processors [36], have included

the Last Branch Recording(LBR) stack to help with the program debugging. We further

enhance the LBR stack by introducing supplementary logic to filter the redundant con-

trol flow information, i.e. repetitive branches from loops. There is virtually no run-time

overhead from ELBR, and the chip overhead of ELBR is negligible for today’s proces-

sors. We have implemented a prototype system on the Bochs x86 emulator [2]. The

estimated overall performance overhead is negligible.

The existing commercial anti-virus software has limited capability of detecting such

malwares. Emulation-based unpacking techniques have been used [35], but they have to

place a time limit on the emulated execution. Therefore, malwares that use or wait for a

long time in unpacking may not be detected. A recent study [50] confirms that commer-
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cial anti-virus software cannot detect malwares using unpopular packers or variants of

known packers, even though they can detect those using well known packers. Currently,

new packers are created from existing ones at a rate of ten to fifteen per month [64]. As

a result, malware writers have a large selection of tools to pack their malware, and can

easily generate new malwares from old ones.
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5.1 Related Work

Detecting polymorphic and metamorphic malwares has been one of the major chal-

lenges for the security community. Currently, the best solution against such malware

is emulating the malwares and matching signatures or applying dynamic heuristic to

detect them. Some recent work has focused on the problem of generic unpacking or

decryption of polymorphic malwares to extract plain malware code.

Universal PE Unpacker [68] is a plug-in available for IDA Pro disassembler and

debugger [61]. It uses behavior heuristics, single step execution and memory protection

mechanism to identify plain malware execution. The generic unpacker can successfully

extract plain malwares from mosts of polymorphic malware. However it has a few

weaknesses that assumptions used in heuristic to detect the starting point of malware

execution, cannot be applied to all polymorphic malware. Hence it may not be able to

extract plain malware [60, 42].

Portable Executable Identifier(PEiD) [56] is a widely used tool for detecting binaries

that exhibit unpack-execute behavior. It uses a signature database to determine if a

binary contains packed code. If a match is found, an unpacking routine is provided to

extract the hidden-code. The limitation is that it fails to detect even minor variations.

PolyUnpack [60] performs pre-analysis of packed malware by disassembling the malware

and partition it into code and data section, and then performs single-step instruction

execution and identifies where the instruction is executed from. It has been demonstrated

to successfully identify and extract hidden code in the malware. However, it incurs high

performance overhead that makes it difficult to be used in real time. OmniUnpack [48]

is another type of generic unpacker. It dynamically monitors the execution of a program

to detect when the program has been unpacked. It only detects the time of unpacking

and invokes virus scanner to scan unpacked executable. It uses the NX bit or emulation

of NX bit to detect modified code execution. When a dangerous system call is executed,

it invokes virus scanner to scan modified pages where instruction is executed before the

system call. It incurs a small overhead to identify the problematic pages but the pages

still need to be scanned by anti-virus software. Renovo [42] monitors program execution
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and memory writes at run-time, determines modified code execution and extracts the

hidden code. It is built on top of TEMU [1] and emulates execution of malware.

Chritodorecu et al. [18] proposed semantics-aware malware detection mechanism.

Obfuscated malwares are transformed to be formal templates statically. With the tem-

plates, the mechanism generates reference semantic and malware detection algorithm

that can handle some obfuscation techniques used by malware writer. MetaAware [72]

is another semantic characterization and matching tool that uses static control flow and

data flow analysis to generate patterns based on the system calls or library. It tries to

detect metamorphic malwares by matching the pattern of use of system calls and library.

Kruegel et al. [47] proposed the use of structural analysis to detect polymorphic

malwares by comparing the structure. The structure of an executable is described by

its control flow graph. Detecting isomorphic subgraphs and coloring each node based

on class of instructions improves the result of comparison. However, the proposed static

analysis methods have to be applied to plain malwares, otherwise they only identify the

encryption or compression routine. Our control flow matching and instruction stream

scan share some commonality with this approach.

Another approach to deal with poly/metamorphic malwares is behavior-based detec-

tion [17, 43]. High-level description of malicious behavior can detect polymorphic and

metamorphic malwares without considering binary code itself. Christodorescu et al.[17]

proposed automatic generation of specifications of malicious behavior. It specifies ma-

licious behavior in terms of the dependencies between system calls. The specifications

are qualitatively equivalent to those used by commercial anti-virus software and can be

used to identify subsequent malware variants.
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5.2 Recent Control Flow Inspection (RCFI)

Although syntactic malware detection has limitations in detecting polymorphic or

metamorphic malwares, it is efficient for detecting known malwares. On the other hand,

semantic malware detection is able to detect advanced malware but it requires more

extensive plain malware code analysis by using disassemble or emulation. In this study,

we propose Recent Control Flow Inspection (RCFI) that utilizes a special hardware

component called Enhanced Last Branch Recording (ELBR) stack. It assists both syn-

tactic and semantic malware detection by recording relevant control flow information

near dangerous system calls. We also demonstrate its efficiency by designing hybrid

malware detection system. Since the system monitors recently executed control flow, it

effectively inspects the execution of code in unpacked form. Therefore, it can bypass

the packing or encryption method that a malware may employ. Additionally, sandbox

mechanism can be used as another layer of guard against malwares. In that case, our

mechanism can effectively detect the presence of malwares and stop their execution.

Figure 5.1 shows an event flow of the proposed RCFI. The system consists of syntactic

and semantic detection modules. The left-hand side of flow in the schematic shows the

syntactic detection path. RCFI records and matches the executed block sequence of a

program. Malware detection is done in two stages in this syntactic detection. In the

first stage, it searches the current control flow of a program from malware signature,

when a dangerous system call is invoked. At this stage, the monitor lightly checks the

sequence of executed block sizes instead of matching sequence of instructions. Since

the size of instructions is varying in x86 ISA, block size matching can quickly filter out

benign execution flow. In the first stage, the syntactic signature consists of control flow

information: instance of system call and size of last n executed blocks. The second stage

is instruction stream matching. The monitor generates executed instruction stream

from information stored in ELBR stack. In this stage, the reconstructed instruction

stream can be analyzed with existing anti-virus software to verify the result of block size

matching.

It is possible that advanced malware bypass syntactic detection by using advanced
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Figure 5.1 Recent Control Flow Inspection (RCFI) System Event flow.

polymorphic techniques such as equivalent instruction substitution, block reordering,

and so on. To detect such cases, at the time of control flow monitoring, behavior

monitor is being performed. The right-hand side flow in figure 5.1 shows the semantic

detection module path.

There are a number of studies which monitor system call sequence to detect anomaly

by system call interception and dynamic binary instrumentation. However, system call

interception techniques usually impose high performance overhead for analyzing the

system call sequence and generating high false alarms due to insufficient process infor-

mation [30, 21, 34, 62]. In contrast to these approachs, RCFI searches known behaviors

of the malware that is similar to [17]. RCFI also monitors the behavior of a program to

detect advanced poly/metamorphic malware. When it detects the known behaviors of

malware in the system, it analyzes semantics of malware with reconstructed instruction

stream to reduce the false positive.
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Figure 5.2 RCFI System Architecture.

5.3 Implementation

Figure 5.2 shows the RCFI system architecture. RCFI is composed of hardware

ELBR stack, kernel modules, user-space signature/behavior scanner and instruction

stream/semantic analyzer. The kernel modules, system call monitor and kernel driver,

are responsible for retrieving control flow information from ELBR stack upon a system

call event. The signature/behaivor matching componet in RCFI tries to match the con-

trol flow and behavior with signature database. Another RCFI user-space components,

instruction stream/semantic analyzer, are activated by signature/behavior scanner upon

a outcome of the scanner. The instruction stream/semantic analyzer is responsible for

confirming the malware instance by instruction stream or semantic analysis.

We first built an initial prototype on Intel P4 processor, which has limited LBR

entries. The detection works in some cases, but the LBR is not large enough to hold suf-

ficient control flow information for generating a reliable signature. We further extended

the prototype on the Bochs emulator and ran Windows 2000 on top of it. We extend the

Bochs emulator [2] to simulate ELBR stack and efficient helper structures for extracting

control flow information.
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Enhanced Last Branch Recording(ELBR) Stack

Recent commercial processors have provided Last Branch Recording mechanism for

debugging purpose [36]. Intel Pentium 4 Processor have 16-entry LBR stack and other

processors, e.g. AMD have different number of entries. It records taken branch, interrupt,

and exception information as source address and target address. The information can

be read by issuing machine specific instruction when information is needed. We use the

mechanism for tracking the control flow of programs. Since the hardware LBR stack has

fixed size, only most recently executed branches can be recorded.

Due to the fixed size of the hardware LBR stack, we revised the LBR stack design to

filter out some of the control flow information to make the stored contents in LBR more

relevant to malware detection. Our design goal is to minimize the hardware modification

for maintaining the simplicity of LBR stack. We consider three common cases that cause

scalability issue in LBR stack: irrelevant control flow information, simple loops, and

immediate jumps.

The first modification is adding address range checker. The Intel processor LBR

design provides an ability to selectively record branch information from User or/and

OS; however, it does not distinguish between DLL(library) and program main body.

When system call is intercepted without the separation, the LBR stack may have many

entries storing the control flow information of DLL or library routine which does not help

malware detection. Figure 5.3 shows the number of branches between system calls in

the library routine. The data is collected during initial behavior of Win32.Mytob. The

x-axis shows the sequence of dangerous system calls and the y-axis shows the number

of branches before a dangerous system calls in the library routine. For instance, the

dangerous system call sequence one through ten is called from ”LoadLibraryA” library

function. The first bar in the graph shows the number of branches between the entry

of the library routine and system call. The second bar shows the number of branches

between the first dangerous system call and second dangerous system call.

The results show that simply increasing the size of LBR stack may not guarantee the

capturing control flow of malware body. Moreover, since the content of LBR stack needs
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Figure 5.3 The number of branches before a dangerous system calls in li-
brary routine for Win32.Mytob.

to be saved for each process at every context switch, excessive size of LBR stack imposes

extra context switch overhead. Although the system can filter out library information

by inserting routine that disables LBR stack before entering library routine, it would

occur performance overhead. Therefore, it is useful to add address range checker to filter

out unnecessary information 1.

The second addition is a simple single block loop detector to filter the redundant

control flow information from execution trace. The single block loop such as string copy

routine usually appears in most malwares. Figure 5.4 shows the partial execution trace

for the malware. The first hex decimal represents source address of a branch instruction

and the second hex decimal represents target address of the branch. The third column

shows the name of WIN32 API. In the trace, the library routine is already filtered out for

clarification. The ELBR stack will eliminate the loops for example, the branch number

4,10,18,23,and 24 from the first 28 branches.

1It easily identifies corresponding dangerous API calls when dangerous system calls are invoked, so
we do not distinguish between dangerous API calls and dangerous system calls in this paper.
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Another modification is the elimination of immediate jumps. The immediate jumps

are branch instructions that immediately forward control flow to other code block. These

jumps are widely used in a program that uses position-independent code. For instance, in

figure 5.4(a), jump target in branch 27 and jump source in branch 28 are identical. Hence

the jump source in branch 28 is immediately forwarding the control flow to its target.

Therefore the information may not useful for detecting malwares. Moreover, malware

writer can easily overflow LBR stack with immediate jump insertions, so that the third

modification is immediate jump elimination. When a jump instruction is jumping to

very next instruction or its target is immediate jumps, it eliminates the jumps .

1 00402ed7 00403720

2 0040372a 00403740

3 00403756 00403740

4 00403756 00403740

5 0040375d 00403791

6 0040379a 00402edc

7 00402ef3 00403640

8 0040364b 0040365c

9 00403672 0040365c

10 00403672 0040365c

11 00403679 0040369e

12 004036ab 004036c6

13 004036e6 0040370f

14 00403717 00402ef8

15 00402f06 00403640

16 0040364b 0040365c

17 00403672 0040365c

18 00403672 0040365c

19 0040367d 00403699

20 0040369c 004036a1

21 004036ab 004036c6

22 004036de 004036c1

23 004036de 004036c1

24 004036de 004036c1

25 004036e2 00403718

26 0040371f 00402f0b

27 00402f1c 0041a05b

28 0041a05b 7c4f46c0 CopyFileA

(a)

1 00402ed7 00403720

2 0040372a 00403740

3 00403756 00403740

5 0040375d 00403791

6 0040379a 00402edc

7 00402ef3 00403640

8 0040364b 0040365c

9 00403672 0040365c

11 00403679 0040369e

12 004036ab 004036c6

13 004036e6 0040370f

14 00403717 00402ef8

15 00402f06 00403640

16 0040364b 0040365c

17 00403672 0040365c

19 0040367d 00403699

20 0040369c 004036a1

21 004036ab 004036c6

22 004036de 004036c1

25 004036e2 00403718

26 0040371f 00402f0b

27 00402f1c 7c4f46c0 CopyFileA

(b)

Figure 5.4 Recorded Control flow example for Win32.Netsky.c: (a) without
ELBR (b) with ELBR.
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Signature/Behavior Scanner

As previously mentioned, the straightforward dynamic method to detect known mal-

ware is to scan every new or modified page dynamically. However, blindly scanning those

pages would incur unacceptable performance overhead. It is also effective if executed

instruction stream is dynamically compared with signature which can be done in emu-

lation environment. However, it is hard to implement such mechanism with acceptable

performance penalty without hardware supports.

We use a hardware support to efficiently inspect instruction stream. Our detec-

tion mechanism is to dynamically inspect instruction stream when problematic behavior

(event) is occurred. The signature scanner projects problematic events by matching con-

trol flow of a program at dangerous system calls2. However, our control flow matching is

somewhat different from the conventional control flow matching: we neither pre-process

the executable nor identify basic blocks. The control flow matching simply compares

the sequence of executed block size obtained from ELBR stack. Although matching

sequence of block size is a coarse-grain inspection, it filters out large portion of benign

system calls due to different size of instruction in x86 architecture and uniqueness of

malware code.

Control flow monitoring is effective for detecting malwares that use polymorphic

decryptors or/and variants of packers to evade signature-based detection mechanism,

since the execution of malware body is identical. The signatures consist of system calls

(API) and sequence of block size. The signature is extracted from plain malwares . The

signature also needs to capture the control flow near monitored system calls or API

calls. Since the ELBR stack only records user-level control flow, the most recent entry

is an instruction calling library routine or a system call directly from user code. If one

instance of control flow is insufficient to determine the malware, the next control flow

before the next dangerous system call is also monitored continuously. Note that we

assume the existence of the recovery mechanism, which tracks the system behaviors.

2We define a system call as a dangerous system call if it can result in changing the status of system
such as changing file system and registry. In our experiment, we define 33 system calls as dangerous
system calls.
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For example, in malware Win32.Netsky.c, a sequence of three API calls from the first

dangerous system (API) calls are CopyFileA, RegOpenKeyA, and RegSetValueA. The

system call monitor intercepts the system call and tries to match the control flow at the

dangerous API calls such as CopyFileA and RegSetValueA. If the control flow prior to

the CopyFileA is matched, the information of control flow is passed to be analyzed. If

the result of analysis is negative, following control flow at RegSetvalueA is analyzed.

The instruction stream analyzer checks the executed instruction stream when a se-

quence of block size is matched with malware signature. It is only effective for simple

polymorphic and packed malware which do not change the malware body. However, it is

also effective for simple metamorphic techniques [67] such as using different registers in

new generations, reordering modules (blocks). However, signature scanner in RCFI can-

not handle complex metamorphic malwares that changes the size of blocks in malware

code, such as equivalent code replacement, garbage code insertion in blocks, spurious

jump insertion and so on. In order to detect minor variation of malware, we employed

behavior monitor. It helps detecting known malicious behavior of program. Moreover,

by using control flow information, algorithmic malware analysis through disassembly,

called semantic detection [18, 72], can be easily performed. Even if signature scanner

misses complex metamorphic malware, the whole system still has a chance to perform

various analysis on malware.



www.manaraa.com

100

Name Behavior Version
Win32.Bagle Email Worm an,b,c,i,k
Win32.Bronktok Email Worm b,q
Win32.Doonbot Email Worm b,g,k
Win32.Mydoom Email Worm a,m
Win32.Mytob Net-Worm r,t,x
Win32.Netsky Email Worm aa,b,c,d,e,m,q,r,t,x
Win32.Nyxem Email Worm a,e
Win32.Scano Email Worm s, h

Table 5.1 Tested malware samples.

5.4 Evaluation

We obtained 30 live malwares from Offensive Computing [22] and tested them on

our revised Bochs emulator [2] running Windows 2000 to demonstrate the effectiveness

of our approach. Those malwares include the top 20 malware for May 2008 in [6] and

are listed in table 5.1. The first column gives the name of malware. The second column

shows the category of the malware and the third column shows the tested versions. Ini-

tially, we generated the entire execution trace of malwares to identify the plain malware

code by applying similar heuristic used in universal PE Unpacker [68]. Universal PE

Unpacker assumes that GetProcAddress is always called to set up the import table after

the malware body is decrypted or unpacked and before it reaches the original entry point

of malware. With the trace of the malwares, we manually generate their signatures near

the dangerous system calls.

5.4.1 Experiment

In this section, we illustrate the malware detection process step by step with a sample

malware. One of the malwares tested in the experiment,Win32.Netsky.c, is packed with

PEtite V2.2. The initial behaviors of the malware are that it copies itself into Windows

system directory and the edits the registry to auto-run itself from the next booting. It

also deletes some of the registry keys.
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Execution Flow Monitor The signature scanner generates information from the

most recent branch when dangerous system call is intercepted. In this example, Copy-

FileA, RegSetValueA, and RegDeleteValueA call dangerous system calls. For example,

when the first dangerous system call is intercepted, the information generated by the

monitor is {CopyFileA, 17, 7, ... }. The first entry is a caller of dangerous system call

or system call number if it is called directly from the user code. In this case, library

routine CopyFileA invokes a dangerous system call. The second entry is the size of the

block prior to the jump. Note that it is not a basic block; it is the executed block that

may contain basic blocks. The signature scanner looks up to n branches where n is

determined by the length of signature and hardware ELBR stack.

The first stage detection, control flow signature scanning, tries to find the matching

control flow with information in ELBR stack and signature database. In our experiment,

we generate signature with the last 5 branches for CopyFileA to detect the malware

for demonstration purpose. Although we have not seen false alarm in our emulation

environment, the signature, which has a small number of branches, may raise false alarm

in real system since CopyFileA API is widely used in many application. Therefore, the

signature depth should be properly set to effectively filter out benign system calls. The

signature scanner also records the control flow information and register values for last

m dangerous system calls. The recorded information will be used when the behavior

monitor raises an alarm. If a dangerous system call turns to be a benign system call,

signature scanner hashes the information and caches it for avoiding instruction stream

match when the same dangerous call is encountered.

Note that more complex malware may exploit the cache mechanism to bypass the

control flow matching. For example, the first malware may generate random instructions

in each block and then the benign code is examined. Once the random instructions pass

the instruction stream analyzer, the malware overwrites the random instructions with

malicious instruction and performs malicious behavior. At this time execution monitor-

ing misses the malware since the control flow signature is stored in the cache. However,

it is hard to generate such malware. The random instructions in the block should not
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generate any error or random effect that accidentally terminates malware. The random

instructions also need to be polymorphic so that it cannot become a signature. Even if

such a malware is generated successfully, it might raise an alarm at the behavior monitor

and the code will be re-examined. At this point, the overwritten code will be examined.

Instruction Stream/Semantic Analyzer When the control flow of a program is

matched with malware signature, instruction stream analyzer reconstructs the executed

instructions from the control flow information. At this point, since the instruction

stream analyzer already knows the possible candidate signatures, simple string match

algorithm [51] is used for detecting malwares.

Semantic analyzer is activated when behavior monitor raises an alarm. It uses the last

m dangerous system call information stored in the signature scanner. In the semantic

analyzer, with the control flow information, more complex malware analysis can be

done that is chosen by anti-virus system designer. In this paper, we choose some of the

program static heuristics [51] and semantic based [18, 72] malware detection methods.

First, it re-examined the constructed instruction streams for the cases that malwares

exploit the weaknesses of signature scanner(See 5.4.3 for more details). If the examined

instructions pass the instruction stream analyzer, the system applies dynamic heuristic

by inspecting history of system status at dangerous system calls. When the result raises

an alarm, it applies semantic or algorithmic detection method to the reconstructed

instruction streams to detect malwares that use garbage insertion, and equivalent code

replacement techniques.

5.4.2 Effectiveness

In order to demonstrate its effectiveness, we tested 30 live malwares from Offensive

Computing, and encrypted and packed a toy program with 6 packers, teLock, ACPro-

tect, UPX, ASpack, ASProtect, and MEW in the Bochs emulator. The toy program is

composed of series of dangerous system calls and series of operations between the system

calls. During the malware test, 30 live malwares are successfully identified through exe-
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cution flow monitoring. Also, in the toy program packed with various options in packers,

the instruction stream near the dangerous system call is also successfully identified. We

further test the obfuscated toy program with metamorphic techniques [67].

Using Different Registers The most simple metamorphic technique is using dif-

ferent registers for different instance of malware. In such a case, the program block size

is not changed. The signature scanner generates an alarm and the instruction stream

analyzer can simply use static heuristic to identify the toy program.

Instruction Stream Reordering In this test, the toy program blocks are re-

ordered statically. First we divided the toy program into different size of blocks and

reorder them but the control flow of blocks is not changed. In this case, signature

scanner is able to identify the original execution of blocks order and instruction stream

analyzer can identify the program. In the second test, we reordered sequence of block

execution if blocks are independent. In the third test, we inserted jumps between the

instruction to reordered instructions. Although signature scanner missed it due to dif-

ferent sequence of block size or different size of block, the system call monitor eventually

generated alarm and the semantic analyzer successfully identified the toy program by

removing jumps and reconstruct the instruction stream.

Garbage Insertion and Equivalent Code Substitution If garbage or semantic

no-op instructions are inserted between blocks where the control flow would not reach,

the signature scanner raises an alarm and the instruction stream scanner can successfully

identify them. However, when the semantic no-op instructions are inserted within blocks,

they would change size of blocks. Due to the change in block size, the signature scanner

misses the dangerous system calls. When the system call monitor detects malicious

behavior, the obfuscated instructions are examined by semantic analyzer.
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5.4.3 Limitation

With near native speed, the system performs most of the functions of malware detec-

tion that can be done in emulation environment: original entry point discovery, dynamic

disassembly, control flow monitoring, and behavior monitoring. However, the system has

a few weaknesses. It uses dangerous system calls as a break point of dynamic analy-

sis, so signatures must be generated from instruction stream of near dangerous system

calls (API). In our limited experiments, all malwares are identified by instruction stream

of near dangerous system calls without false alarm. However, our experiments do not

ensure that signatures of all malwares can be generated from instruction stream near

the dangerous system calls since anti-virus software uses various data in malwares as

signatures.

Another weakness is that the system relies on the hardware LBR stack for retrieving

control flow information. Due to the size limitation, the system can verify at most n last

branching information. Consequently, in the worst case, the system can verify the last

n instructions. If a signature contains more than n instructions, the instruction stream

analyzer will fail to match the signature. Even the semantic analyzer cannot identify

the signature with the provided control flow information.

The other weakness is that before the dangerous system call, malware can overwrite

or encrypt the executed instructions. In this case, reconstructed instruction stream is

encryption routine and is considered as semantic no-ops since malware must save system

call(API) parameter before encrypting the code and encryption routine does not affect

the system calls (API). Therefore, the system cannot make a decision immediately.

These weaknesses do not reduce the security strength of the system; nevertheless,

they incur extra performance overhead. In these cases, the system call monitor raises

alarm and the semantic analyzer fails to detect malware, but it can identify the reason

for the failure of analysis. The reason can be either insufficient number of instructions

(partial match), or semantic no-op insertion before the dangerous system calls (API)

that does not affect the call. For the first case, it may be possible to disassemble the

malware code with the recorded control flow information. However, in the latter case, the
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semantic no-op operations can be an encryption routine. If the instruction stream cannot

be reconstructed with the control flow information, the program has to be examined in

slow emulation environment. Thus, the system still has a chance to detect more complex

metamorphic malwares at extra cost.

5.4.4 Performance Analysis

Since our method has been implemented in Bochs emulator, we are not able to provide

accurate performance overhead. We estimate performance overhead by presenting the

number of dangerous calls. The most widely used performance benchmark suite, the

SPEC CPU benchmarks, shows negligible performance overhead. We further chose

some real applications in Windows. Table 5.2 shows profile data of the selected benign

programs. The second column shows the total number of executed instructions on

average, and the third column shows the total number of invoked dangerous calls. The

following is the description of those benchmarks and the profiling method:

• bzip2: bzip2 is a console mode compression application. It uses bzip2 algorithm

to compress and decompress a file. Files of various sizes are compressed and

decompressed during the profiling phase. The sizes of input files are 50KB, 100KB,

500KB, and 1MB. The profiled data is the average values of each compression or

decompression of files.

• calculator: The test are performed by testing different combinations of functions

in the application. The profiled data are the average values of each combination

of functions.

• dBpowerAMP Musinc Converter: it converts various music file formats to other

formats. We profiled the application when it converts files of various format and

size. The profiled data are the average values of each conversion.

• Internet Exploer 6: We profiled it by visiting 10 websites. The profiled data are

the average values of opening a single web page.
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Name Total Inst. Dan. Syscalls

bzip2 61409624 49
calculator 48298230 40

dBpoweramp 545930652 8140
IE6 64121944 481

notepad 1394336920 1343
Winzip11 2920840250 33450

Table 5.2 Profiled Data of Benign Programs.

• Notepad: The text editor is profiled by generating 5 pages of random text with

using basic functions. The profiled datum is the average value of 3 different text

file generations.

• WinZip11: The GUI based file compression application is profiled with same bzip2

input files. It also performed compression and decompression. The profiled datum

is the average of each operation.

We estimate the performance overhead indirectly from the profiled data. The perfor-

mance overhead comes from system call monitoring, control flow matching, instruction

stream matching, and applying heuristic. The system call monitoring can be performed

by hooking interrupt description table and systener MSR. Recording and identifying the

dangerous system calls can be done in constant time. For each dangerous system call,

the control flow matching and instruction stream matching are performed. We used

AhoCorasick string match algorithm [9] for the control flow matching and instruction

stream matching. The algorithm complexity is O(m) where m is the length of a sig-

nature. The maximum value of m is fixed by hardware for control flow monitoring.

For instruction stream matching, m is the length of instruction stream signature. The

average length of string signature in Clam-AV [46, 74] is from 46 to 124, therefore the

execution flow monitoring would incur negligible performance overhead3.

3Our analysis shows that retrieving control flow information in current Intel Pentium4 processor
requires from 248 to 355 cycles per entry. Therefore, retrieving 10 branch information would take
around up to 3550 cycles. However, we believe that MSR can be optimized and performance overhead
can be reduced.
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The semantic analyzer is activated when the system call monitor raises an alarm. It

mainly reduces false alarm and detects malwares that bypass the control flow monitoring.

It performs a series of heuristic scans including instruction stream scan and algorithmic

detection. When the semantic analyzer cannot determine malware instance (see the

discussions of limitation), it has two possible options: halting the program, or further

analyzing the program with complex metamorphic virus detection scheme. The overhead

of the heuristic scanner is indefinite in this case. However, the use of control flow

information and the failure reasoning of semantic analyzer give more confidence to system

call monitor to halt a program.
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6 Conclusion

The dissertation supports that the non-invasive dynamic control flow validation sys-

tem can be implemented by using the existing hardware features in commercial micro-

processors. In order to provide a seamless control flow validation, it suggests a hardware

support that validates indirect control transfers in programs to augment computer sys-

tem security. The thesis also explores how the hardware component effectively utilizes

the control flow information to enhance computer system secuciry.

Since the Morris worm incident, there have been many proposed defense mechanisms

against CFAs. Some of the solutions provide limited protection against a specific CFA

method such as protecting return addresses in program stack [24, 57, 16], preventing

injected code execution [3], and checking the bounds of the buffers [40]. Also generic

protection mechanisms are proposed with hardware modifications in order to prevent

CFAs. Dynamic Information Flow Tracking [65], and Minos [25] modify the hardware

to efficiently track down spurious data to prohibit using the data as the control data.

However these defense mechanisms may have some drawbacks due to the limited protec-

tion scope, complicated system implementation, or extensive hardware modifications.

A natural solution to prevent the control flow attack could be monitoring the pro-

gram execution to ensure that it conforms to a pre-defined specification of its intended

behavior [45]. Another solution, a model-based solution, monitors other indirect events

such as system call sequence [29, 31, 70]. However these system monotoring methods

usually suffer from false alarms due to imprecision of its attack detection and the mimicry

attacks due to corase-grain monitoring intervals.

Program Shepherding [44] has been proposed to run vulnerable programs on the

dynamic code optimization system, DynamoRIO. The system monitors every indirect
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branch to enforce security policies on program control transfers. However, it incurs

large performance overhead due to the inefficient monitoring method. Abadi et al. [8]

proposed the defense mechanism by instrumenting the program binary code in a manner

that validates every indirect control transfer by inserting the validation stubs before the

control instruction or replacing control instructions with the security code. It requires

a sophisticated binary instrumentation tool to identify legitimate targets and insert the

security code.

Control flow validation is an effective mechanism to prevent CFAs that change the

control data, such as target addresses of jumps, calls and returns to redirect the program

flow to the choices of attackers. The traditional control flow validation mechanism has

been implemented in two methods: the first method is to use dynamic binary translation

used in the various middleware such as dynamic optimization, binary instrumentation,

and so on. The second method is the inlined reference monitor(IRM) that use a trusted

binary re-writer to insert security code into a target application in a manner that val-

idates the target address of the control instruction. Another possible method is to

use the existing hardware features in commercial microprocessors. The hardware fea-

tures are designed for supporting application debugging and performance monitoring.

These facilities also can help with dynamically observing problematic control transfers

in a non-intrusive manner. The hardware performance monitoring feature detects and

counts various hardware events. When the number of events exceeds the maximum

threshold value, the facility generates a hardware interrupt so that the hardware state

can be observed. The hardware debugging feature is used in conjunction with the per-

formance monitoring feature to identify the program counter value that triggeers the

event. By leveraging the hardware capability, the control flow validation mechanism

can be implemented transparently to the target application. Since the states of the

hardware facility is transparent to the applciations and the hardware events, monitored

by the performance monitoring feature, cannot be crafted by other entities in the com-

puter system, the implementation provides strong guarantees that the successful CFA

is extremely difficult, if not impossible, under the control flow validation system.
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IBMON is a fine-grain control flow validation system that utilizes the hardware

features in commercial processors. Using the hardware monitoring feature has numerous

benefits: IBMON guarantees the uncircumvent complete validation of the problematic

control flow transfers. The hardware facility and its events are transparent to the target

application and the user. Hence CFAs cannot circumvent the control flow validation.

Modern processors provide mechanisms to transfer control of a system to IBMON. Hence,

the monitor can achieve fine-grained security checks without modifying the source or the

binary code of the target program. This facility also gives flexibility to IBMON so that

IBMON can dynamically adjust the target applications and the validation intervals. The

prototype systems effectively detect various CFAs and exhibit the performance overhead

which ranges from 0% to 33.5% an average of 8.3% for SPECINT2000 benchmarks. For

other server benchmarks, the performance degradation of IBMON is negligible.

Although IBMON is the most efficient control flow validation system among existing

control flow validation systems, it still incurs non-negligible performance overhead upto

33.5% for one of the SPECINT2000 benchmarks. Therefore, the thesis also proposes

effective yet minimal hardware suuport which can provide a seamless control flow vali-

dation environment. IBF-Cache (Indirect Branch Filter Cache) is the cache design that

effectively reduce the frequency of control flow validation by exploring the temporal local-

ity of control flow transfers in programs. In various performance tests, based on both the

trace-based and the cycle accurate simulations, IBMON with IBF-Cache shows negligible

performance overhead on all SPECINT2000 benchmarks and other server benchmarks.

The thesis also addresses utilizing the control flow information to detect unwanted

programs running in a system. The conventional approach to detecting malwares is

based on static scanning of malware signature in system files and the memory. This

static scanning is effective for detecting many existing malwares, but is very limited

for malwares that use packing and encryption methods to hide their contents. New

generations of malwares are increasingly using these methods. According to a recent

study [15], 77% of malwares seen during January 2007 used run-time packing methods.

A straight-forward approach to detecting those malwares is to scan system memory,
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including that used by all applications, for malware signature from time to time. The

scanning may be triggered by timer interrupts, system calls, or other system events.

To ensure system security, the scanning has to be done frequently. If the scanning

happens too late, a malware may have already taken control of the system or may

have done significant damages or caused leakage in the application data. Furthermore,

there is little hint available to the scanning process, so a complete scan of the system is

necessary. Frequent and complete scanning of system memory, however, will incur so a

large system overhead that eventually makes the system unusable.

Therefore, utilizing the control flow information has a potential benefit to the exist-

ing misuse-based defense mechanisms. As mentioned before, anti-virus software suffers

from polymorphic malwares. However we notice that the most popular polymorphic

mechanisms, designed to avoid static scanning, reveals the original control flow of the

malware at run-time. Hence we also propose to construct malware signatures from their

control flow information to detect ingenious malwares at run-time. It is also potentially

beneficial for the system call sequence monitoring approach to add the history of con-

trol flow information into the states. Since the mimicry attack takes advantage of the

imprecision of the defense mechanism, additional control flow information can make the

states more precise.

The RCFI system demonstrates the usefulness of hardware support with a sample dy-

namic malware detection system. It inspects the control flow and monitors the behavior

of a program at dangerous system calls. The existing LBR stack is modified to provide

the control flow information with virtually no performance penalty. The initial testing

results from a prototype show that the RCFI system can successfully detect signatures

from malwares with negligible performance overhead on benign programs. The system

stops malware execution when it makes system calls, but it may also be combined with

system protection mechanisms including sandbox [71] or snapshot mechanism in the

virtual machine [7] so that the system can be safely recovered after malware detection.

Our future work is to integrate the RCFI system into sandbox or the virtual machine

environment and to test benign programs and malwares more extensively than current
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experiments.
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